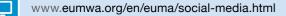
THREE CONFERENCES

THREE FORUMS

ONE EXHIBITION

26TH EDITION OF THE EUMW WEEK CONFERENCE PROGRAMME EUROPE'S PREMIER MICROWAVE, RF, WIRELESS AND RADAR EVENT

WAVES BEYOND WALLS Register online at: www.eumweek.com


Table of Contents

Promoting European **Microwaves**

Follow us on social media

Join the EuMA Community

Eu/MA, the European Microwave Association®

is an international non-profit organisation with a scientific, educational and technical purpose, under Belgian law.

For more information and contact, visit :

www.eumwa.org

WELCOME MESSAGES

GENERAL INFORMATION

The EuMW 2023 Organising Committee · · · · · · 12
EuMA Awards · · · · · · · 17
Tom Brazil Fellowship Award and IJMWT prizes $\cdots \cdots 20$
EuMA and EuMW Committees $\cdots \cdots \cdots \cdots 21$
EuMW 2023 Reviewers · · · · · · · · 22
Travel Information · · · · · 23
Local Information and Insurance · · · · · · · · · 24
Conference Information · · · · · · · · · · · · · · · · · 24
Hotel Booking Form · · · · · 25
Welcome to Berlin! · · · · · · · · · · · · · · 28
Social Events · · · · · · · · · · · · · · · · · · ·

REGISTRATION

Workshops and Short Courses List	32
Registration Information · · · · · · · · · · · · · · · · · · ·	33
Registration Fees · · · · · · · · · · · · · · · · · ·	34

STUDENT ACTIVITIES AND WIM

13th Tom Brazil Doctoral School of Microwaves $\cdots\cdots\cdots$ 36
7 th European Microwave Student School · · · · · · · · · · 37
Student Career Event · · · · · · · · · · · · · · · · · 38
13 th THz Young Scientists Meeting · · · · · · · · · · · · · · 39
Joint Women in Microwaves (WiM) and Young Professionals (YP) Event · · · · · · · · · · · · · · · · · 40
Young Professionals in Microwaves · · · · · · · · · · · 41

FORUMS
The Automotive Forum · · · · · · · · · · · · · · · · · · ·
Defence, Security and Space Forum····· 44
5G to 6G Forum · · · · · · 46
TECHNICAL SESSIONS
Monday 18 th September 2023 · · · · · · · · · · · · · · · 48
Tuesday 19th September 2023 · · · · · · · · · · · · · · · · · 52
Wednesday 20 th September 2023 · · · · · · · · · · · · 62
Thursday 21st September 2023 · · · · · · · · · · · · · · · · · · ·
Friday 22 nd September 2023 · · · · · · · · · · · · · · 82
WORKSHOPS AND SHORT COURSES
Welcome of Workshop/Short Course Chairs·····85
Sunday 17th September 2023 · · · · · · · · · · · · · · · · 86
Monday 18th September 2023 · · · · · · · · · · · · · · · · 97
Friday 22 nd September 2023 · · · · · · · · · · · · · · · · · 106
ANSYS · · · · · · 112
Dassault Systemes · · · · · · · · · · · · · · · · · · ·
IHP114
SESSION MATRIX
Sunday to Friday Overview ••••••••••••••••••••••••116
VENUE OVERVIEW
Venue Overview · · · · · · · · · · · · · · · · · · ·
Exhibitor List · · · · · · · · · · · · · · · · · · ·

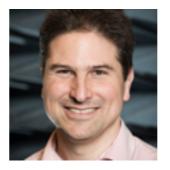
The European Microwave Week 2023 organisers would like to thank the following companies for their help and valued support throughout this year's event.

PLATINUM SPONSOR

ROHDE&SCHWARZ Make ideas real

SPONSORS

Welcome to the 26th European Microwave Week


Dear friends of the microwaves! It is our great pleasure to welcome you to the European Microwave Week (EuMW) 2023 in Berlin. After 25 very successful EuMWs in different cities in Europe, it's time for us to go to Berlin!

Berlin - the capital and the largest city of Germany, is a fascinating European city that is renowned not only for its landmarks and museums, but also a rich cultural life, vibrant party scene, and urban art. Evolving and progressing from a past of division into east and west, it has a distinctive charm of multi-layered uniqueness and a multi-cultural atmosphere. This is the reason we chose the Brandenburg Gate and the torn-down wall as our logo to celebrate the unification. Our slogan "Waves beyond walls" for EuMW 2023 shall emphasize that microwaves can unite and bring people closer. We are convinced that science can help tear down "walls".

European Microwave Week 2023 is held in hub27, which is part of the Berlin Expo-Center City (Messe Berlin). Hub27 is a recently opened modern conference centre with a large exhibition hall, which can be conveniently reached by public transportation (S-Bahn stop "Messe Süd"). Berlin can be easily reached by train and plane. The Berlin Brandenburg Airport Willy Brandt (BER) opened for international flights in 2020 and has excellent train connections to downtown Berlin. The city of Berlin has exceptionally good public transportation, which allows one to get

to any point of the city very efficiently and much more conveniently than by car. We want to make your visit to Berlin as convenient as possible. Therefore, we will include full usage of Berlin's public transportation in your conference badge, including the trip to and from the airport. For more details, please see the registration information.

EuMW 2023 includes the European Microwave Conference (EuMC), the European Microwave Integrated Circuits Conference (EuMIC), the European Radar Conference (EuRAD), the Defence, Security and Space Forum, the Automotive Forum, the 5G to 6G Forum, a large number of Workshops covering a wide range of topics. Focused and Special Session and special events. such as Women in Microwave Engineering and two Inter-Society Technology Panels by IEEE MTT-S. The opening and closing plenary sessions of each of the three conferences feature keynote lectures by internationally renowned leaders in their fields. In addition to the conferences, the annual European Microwave Exhibition, which is by far the largest RF and microwave trade show in Europe, will offer attendees the chance to explore the latest technological advances in the industry. Since meeting and networking are vital for our community to exchange ideas, make connections, mentor younger colleagues, meet old friends and make new ones, we organized many social activities, such as the EuMIC dinner, Automotive Forum Dinner, Welcome Reception, Gala Dinner, TPC lunch, and EuRAD lunch.

THOMAS ZWICK EuMW General Chair Karlsruhe Institute of Technology, Germany

TU Braunschweig, Germany

Participation of students and young professionals is strongly encouraged. We organized many activities specifically for students, namely Student and Doctoral Schools with a get-together for students and Young Professionals, prizes and grants, an extended student volunteers program, and most importantly the Student Career Event, which is going to be a great opportunity for students to meet and network with potential employers and have a great party in a club in Berlin.

We extend our sincere gratitude to the EuMW 2023 organization team for their tireless effort in putting together an excellent technical and social program. We also thank EuMA and Horizon House for their continued support and help.

Come and join us in Berlin and enjoy both the European Microwave Week - Europe's premier microwave, RF, wireless, and radar event - and the city of Berlin! In Berlin, you will experience the exciting history of divided and reunified Germany and realize how important international exchange is for peace and prosperity. We look forward to welcoming all of you to our capital!

Welcome from the President of the European Microwave Association

On behalf of the European Microwave Association (EuMA), I would like to welcome you to the 26th edition of the European Microwave Week in Berlin! I am excited to go to Berlin, a city I learnt to appreciate when I did my first international internship when I was still at university, that internship was at Siemens in Berlin, Berlin by the way was then still split into a western and an eastern part. EuMW 2023 will be a great opportunity for the microwave community to come together again and for our exhibitors to showcase your technology to existing and new customers. EuMA stands up for our microwave and RF community. EuMA actively promotes networking between scientists, engineers. decision-makers, and end-users. European Microwave Week (EuMW) is our most important asset and a true networking event. It is the place to get information you can't get anywhere else and to meet colleagues you don't see every day.

EuMA actively supports young researchers. This is why our Innovation Team is launching the 6th edition of the EuMA Internship Award. Every year, up to 10 awards of \notin 4,500 each are granted to selected master's and PhD students to spend a period of at least 3 months abroad in one of Europe's leading microwave industries

or institutes. The number of host institutions is growing year on year. As is the number of applicants. Details to submit an application can be found on our <u>website</u>. The deadline to submit your application this year is in November 2023.

EuMA continues also providing grants and reduced registration fees to students and delegates from NIS countries to attend the EuMW. In particular, we support our Ukrainian colleagues.

EuMA offers a <u>membership</u> to all working in the field of microwaves. Members enjoy reduced fees for attending EuMW and EuMA-sponsored events as well as the IEEE IMS and the APMC. EuMA members have free access to our archive of publications and the on-line version of the International Journal on Microwave and Wireless Technologies.

EuMA is very active on social media. Follow us @eumassociation on <u>Facebook</u>, <u>LinkedIn</u>, <u>Twitter</u>, <u>YouTube</u> and <u>Insta-</u> <u>gram</u> and discover our latest posts.

EuMW is the premier microwave conference and exhibition event in Europe. We value the cooperation with IEEE Societies MTT, AP, AESS and ED; the GAAS Association; The MIKON Foundation; EuRAAP; APMC; and our long-standing partner Horizon House / Microwave Journal as event organiser.

Preparing and hosting the EuMW is a major effort, from paper submission and review to on-site organisation. This is accomplished by a team of volunteers year by year. My special and sincere thanks go to Thomas Zwick the 2023 General Chair, his Co-Chair Vadim Issakov and Operational Officer Akanksha Bhutani; to the Treasurer Martin Vossiek; to the General TPC Chair Ingmar Kallfass; to Ilona Rolfes, Jan Barowski, and Amelie Hagelauer the EuMC Chair, Co-Chair and TPC Chair resp.; to Friedel Gerfers, Corrado Carta, and Ulrich Lewark the EuMIC Chair, Co-Chair and TPC Chair resp.; to Christian Waldschmidt, Christina Bonfert, and Marlene Harter the EuRAD Chair. Co-Chair and TPC Chair resp., lust to name a few on behalf of the entire team. Thank you!

European Microwave Week is back in Germany after successful events in 1999. 2003, 2007, 2013 and 2017. All members of the team have worked hard to put together an excellent technical and scientific programme and I am sure they will make your stay in Berlin very exciting and enjoyable, and a rewarding experience of German hospitality. I warmly invite you to EuMW 2023. Come to the beautiful and vibrant city of Berlin. Come to EuMW 2023 and discover information you won't get anywhere else. Take the opportunity to meet and talk to colleagues and friends from all over the world that you don't see every day. Hope to see you in Berlin! And above all: Get involved in our community!

Welcome to the 18th European Microwave Integrated Circuits Conference

It is a great pleasure for us to welcome you to Berlin for the 18th European Microwave Integrated Circuits (EuMIC) Conference, which has been jointly organized by the GAAS^{*} Association and EuMA since 2006.

We are glad, after the Corona Pandemic, to hold the conference at its traditional period, fully in person on Monday 18th and Tuesday 19th of September 2023. The conference venue is the congress and event hall hub27 Berlin, located in the heart of Germany's capital. The city of Berlin is very pleased to host the gathering of microwave experts and IC designers from all over the world.

Within the frame of the European Microwave Week (EuMW), the EuMIC is the premier European technical conference for RF & microwave microelectronics. The aim of the conference is to promote discussion of recent developments and trends and to encourage the exchange of scientific and technical information covering a broad range of microwave, mm-wave, terahertz and related topics, from materials and technologies to integrated circuits and applications. These will be addressed in all of their aspects: theory, simulation, design, and measurement.

If you arrive already on Sunday, we encourage you to register for one or more of the excellent Workshops and Short Courses. Monday is a busy day with a large offering: beyond the Opening Session, there will be 12 regular technical sessions and the traditional EuMIC Dinner at the Meistersaal, at Potsdamer Platz, kindly sponsored by Infineon and the GAAS Association, which concludes the first day. Please note, the dinner location has limited seating, so consider early registration.

The EuMIC Opening Session will feature two keynote addresses by eminent speakers. Dr. Ludger Verweyen of Infineon, Germany, will propose new RF, Power, and Sensor Solutions for greener ICT networks while Christian Zelger from Bosch, Germany, will provide the latest trends of transceivers for automotive radar sensors.

On Tuesday, which also hosts the Opening of the EuMW 2023, the EuMIC offers 5 regular sessions, 1 joint session with EuMC, the Foundry Session, two interactive Poster Sessions (one of them joined), and the EuMIC Closing Session. Several of the regular sessions will feature keynote industry talks on topical themes. The joined Foundry Session will be organized as a Panel Session which will not only address the EU Chip Act but will also deliver the latest updates from the RF and microwave semiconductor foundries.

This year, the EuMIC Closing Session will start with two keynote presentations, the first by distinguished Professor Gabriel Rebeiz, University of California, San Diego, USA on "Leaving the Marconi Era and Entering the Directive Communications and Sensors Era for 5G/6G and SATCOM", followed by Dr. Julio C. Costa, Global Foundries, USA on "RFSOI Technology for the RF Front-End: Then, Now and Tomorrow". This is followed by the celebration of our

FRANK VAN DEN BOGAART President European Microwave Association

FRIEDEL GERFERS EuMIC Chair Technical University of Berlin, Germany

CORRADO CARTA EuMIC Co-Chair IHP & TU Berlin, Germany best contributors. The EuMIC Prize for the best paper and the EuMIC Young Engineer Prize will be awarded by the EuMIC Prize Committee.

In addition to these, the GAAS® Association Tom Brazil Fellowship Award will be presented in dedication to a friend and colleague who made such significant contribution to our microwave community. This award will focus on promoting and encouraging the achievements of research students. It is an essay competition in which the student should provide her/his idea on the role of microwaves addressing global challenges. We would like to take the opportunity to express our appreciation to our authors for their excellent technical contributions and for choosing to disseminate their work at EuMIC. Furthermore, we highly appreciate the dedication of the reviewers and TPC members who have spent their free time making the selections to provide the best possible conference program. Workshops and Short Courses are a major offering of the EuMIC, and so we would also like to thank the organizers for gathering key experts to cover the latest developments. We also wish to acknowledge the support

Finally, we would like to thank the 2022 EuMC and EuRAD teams for sharing their experiences as well as all our colleagues working behind the scenes to support EuMW as a whole.

of the previous EuMIC teams, in particular

Milan, who were always ready to advise.

We are very much looking forward to welcoming you personally in Berlin for an exciting EuMIC conference.

ULRICH LEWARK EUMIC TPC Chair IMST, Germany

Welcome to the 53rd European Microwave Conference

Welcome to the 20th European Radar Conference

With great pleasure and honour, the EuMC 2023 team warmly welcomes you to the 53rd edition of the European Microwave Conference! For the first time in its longstanding history the European Microwave Conference will take place in Berlin, the main capital of Germany, being famous as a vivid, inspiring world city of culture, politics, media and sciences. And as exciting as the city itself, an equally exciting program awaits you during your stay at the conference.

Representing the main event in the European Microwave Week, a broad range of high frequency related topics, from materials and technologies to integrated circuits, systems and applications will be addressed in all their aspects: theory. simulation. design. and measurement. We have done our very best to offer you an attractive conference where you can present and discuss the results of your research and learn about the latest trends, be inspired by world-leading keynote speakers from academia and industry, be exposed to the latest products in the exhibition as well as meet colleagues and make new friends.

We have received over 375 submissions across 40 countries for EuMC 2023. A rich program awaits you throughout the entire week. Along with peer-reviewed scientific works, which will be presented in more than 40 sessions, the program is enriched by contributions from keynote speakers, together with workshops, short courses, forums as well as the Doctoral and Student school. Furthermore, focussed sessions will offer the latest highlights on technological advancements giving insights in the field of THz antennas and systems as well as addressing new developments of 6G technologies reaching from THz communications to aspects of joint communication and radar sensing. There is also the Asia-Pacific focused session when we will hear from several expert speakers.

Another exciting part of this event is the European Microwave Exhibition offering you a large platform for direct interaction with partners from industry and research institutes. This year we expect it to be one of the biggest microwave and RF tradeshows in Europe and hope that it assists and inspires many fruitful technology developments and collaborations.

Furthermore, we want to draw your attention to the plenary talks of three renowned speakers. On Tuesday morning during the EuMW/EuMC Plenary Opening Session, Daniel Mittleman of Brown University, USA, will present his plenary talk on "Security in Terahertz Wireless Links".

Thursday afternoon, during our EuMC Closing Session Heike Riel of IBM Research, Switzerland, will give her plenary talk on "Quantum Computing – Building a New Computing Technology", followed by Jean-Dominique Coste from Airbus, Germany, with his talk "Beams from Space: The Future of Energy?". Don't miss to be there as the EuMC microwave prize and two young engineer prizes will as well be awarded.

In continuation of a tradition, Tuesday afternoon will serve for networking. This year, we will host a joint Women in Microwaves (WiM) and Young Professionals (YP) event comprising of an exciting panel discussion with female industry representatives and a unique sightseeing tour of Berlin's Unterwelten (underground world) afterwards.

On Tuesday evening, the EuMW Welcome Reception will take place, which is free to all conference delegates and invited exhibitors, and on Wednesday evening the EuMW Gala Dinner will lead us to the Tipi of Berlin. Please mind that an additional fee applies for participation and that the number of places is limited.

Finally, we want to thank all authors, reviewers, and TPC members for their valuable contributions and efforts paving the way for an exciting event!

We hope that you will enjoy EuMC 2023 and we look forward to meeting you in Berlin!

Welcome to EuRAD 2023 - the first European Radar Conference taking place in the vibrant city of Berlin! The 20th European Radar Conference (EuRAD 2023) will be held from 20th to 22nd September 2023 in Berlin, Germany, as part of the European Microwave Week 2023. At its 20th anniversary, the EuRAD 2023 will present you stimulating trends and new developments in all aspects of radar systems for a large variety of civil, security, automotive, defense, and medical applications.

We are pleased to bring together international experts, engineers and scientists to discuss, exchange and network. EuRAD is an outstanding and leading international platform to gather and discuss the latest technical developments and trends. Come to Berlin and make new contacts and expand your network. For the first time, EuRAD will take you to the beautiful metropolis of Berlin, a place rich in history and at the same time multicultural and modern, attracting millions of visitors from all over the world every year. No other major city offers such a density of sights, the city is full of life, buzzling and trendy. The conference will take place in Messe Berlin hub27, easily accessible by public transport from all over the city.

On Wednesday in the Opening Session, we present an exciting talk on Antenna Systems for Radar – repealing the contradictions between MIMO and Phased Array approaches. Tom Driscoll, CTO and Founder of Echodyne will present this topic and give us insights into modern antenna concepts. Furthermore, we will report on the latest developments in the field of body scanners, which you all know from security checks at the airport. Matthias Gareis and Andreas Schießl from Rohde & Schwarz will report on walk-through scanners and the innovative concepts of UWB and sequential sampling behind them. In our closing session on Friday, Christoph Reising from the Fraunhofer Institute for High Frequency Physics and Radar Techniques will report on the latest developments in radar sensor technology for space surveillance. We will see new. digital concepts for high performance radars that offer completely new possibilities for remote sensing. During the Closing Session we invite all EuRAD visitors to our traditional EuRAD lunch. We look forward to seeing you there.

With an impressive number of over two hundred paper submissions this year, we are pleased to see a continuously growing interest in the European Radar Conference. Over recent years, EuRAD has become one of the leading radar events, enjoying wide recognition not only in Europe but also globally. The conference covers all relevant aspects and innovations in radar technology, including components, architectures, signal processing and applications. All 204 submitted papers went through a rigorous selection process by our expert review panel, resulting in 122 papers being accepted.

ILONA ROLFES EuMC Chair Ruhr University Bochum, Germany

JAN BAROWSKI EuMC Co-Chair Ruhr University Bochum, Germany

AMELIE HAGELAUER EuMC TPC Chair Fraunhofer EMFT, Germany

CHRISTIAN WALDSCHMIDT EuRAD Chair University of Ulm, Germany

CHRISTINA BONFERT EuRAD Co-Chair University of Ulm, Germany

They have been organized into 18 oral sessions and one interactive poster session at the EuRAD conference, in addition with 9 joint sessions including one poster session shared with EuMC. Among these, focus sessions may be of special interest to you. These include besides a session on UAV-based Radar, two focus sessions on Automotive PMCW Radars as well as two sessions on Joint Communication and Radar Sensing. New trends and recent advances in radar will be addressed by 9 industrial keynotes, distributed over the oral sessions.

Furthermore, several workshops will enhance the EuRAD program, including strong links with both the Defence, Security & Space (DSS) and the Automotive Forums.

This ambitious program could not have been set up without the excellent paper submissions and the tremendous effort of the reviewers and technical program chairs. The EuRAD organizers would like to thank all the authors for their contributions, the reviewers and the members of the TPC for undertaking their tasks in a professional and timely manner. Further, we would like to thank the plenary speakers and the invited keynote speakers for providing invaluable insights.

We look forward to meeting you in Berlin. Enjoy the conference and let yourself be inspired by the motto "Waves beyond Walls".

MARLENE HARTER EuRAD TPC Chair Offenburg University of Applied Sciences, Germany

Welcome from the General TPC Chair

International Journal of Microwave and Wireless Technologies: EuMW 2023 Special Issue

Dear friends and colleagues,

on behalf of the Technical Programme Committee, it is our great pleasure to welcome you to the Scientific Programme of this year's edition of the European Microwave Week!

The actions of

- 764 main authors of submitted abstracts
- 477 active reviewers conducting a total of 5347 peer-reviews
- 460 main authors of final paper submissions
- 115 TPC members
- 56 Chairs and Co-Chairs of TPC sub-committees
- 5 TPC Chairs
- 3 EuMA Conference Software Officers

went into its creation.

It is thanks to the wonderful motivation and dedication of all these indispensable players from all around the world in the making of our conference programme that we can be proud to offer another edition of Europe's largest platform for the exchange of the latest findings and achievements in Microwave Science and Engineering.

More than ever, in times of renaissance after a painful global shutdown of human interaction, the in-person exchange of knowledge among scientists and scholars from around the globe must play its vital role in the advancement

of technology for the safeguard of prosperity, peace and the protection of our planet and civilisation. With doubt and scepticism gaining ground in our societies, an open, transparent and public exchange of ideas to bring science to the people is more important than ever and we hope to also contribute to communicating science with this event.

Together with all those who have helped to bring about the Week's conference program with its impressive wealth and

diversity of stimulating oral and poster sessions, focused and special sessions, industrial session keynotes, plenary keynotes, schools, forums and workshops - not to forget the colourful social events! - we are looking forward to meeting you soon in Berlin and together generate lots of "Waves Beyond Walls".

Thank you for your dedication and commitment to the European Microwave Week!

The International Journal of Microwave and Wireless Technologies was created in 2009 by the European Microwave Association (EuMA) and Cambridge University Press for the benefit of the microwave research community in Europe and overseas.

The journal is published ten times a year. It allows academic and industrial researchers to promote their work and stay connected with the most recent developments in microwave and RF technology. The journal is referenced in databases such as Scopus and Google Scholar and is indexed in the Thomson Reuters Web of Science. Following the success of previous microwave weeks, the journal will again publish a special issue dedicated to European Microwave Week 2023.

AMELIE HAGELAUER EuMC 2023 TPC Chair

ULRICH LEWARK EuMIC 2023 TPC Chair

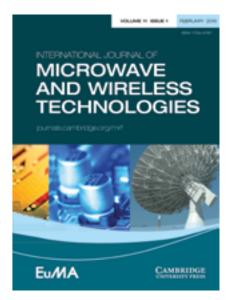
Follow Us on Social Media

DARYNA PESINA EuMA Innovation Team & Social Media Editor

JULIA-MARIE KÖSZEGI EuMW 2023 Social Media Chair

INGMAR KALLFASS

University of Stuttgart, Germany


General TPC Chair

BENJAMIN SCHOCH General TPC Co-Chair University of Stuttgart, Germany

The authors of several highly ranked papers presented at the conferences will be invited to submit an extended version for publication in the journal. The special issue will be guest edited by Amelie Hagelauer, TPC Chair of EuMC 2023, Ulrich Lewark, TPC Chair of EuMIC 2023, and Marlene Harter, TPC Chair of EuRAD 2023.

Accepted papers will be published with no extra-cost as Open Access papers at http://journals.cambridge. org/MRF and can be referenced using their DOI (Digital Object Identifier). Once all submissions are received. the articles will be collated into the Special Issue, which is expected to appear in August 2024.

MARLENE HARTER FuRAD 2023 TPC Chair

ORGANISERS

The EuMW 2023 Organising Committee

Thomas Zwick General Chair Karlsruhe Institute of Technology, Germany

Martin Vossiek

lan Barowski

Nils Pohl

Workshop/SC Chair

Ruhr University Bochum, Germany

EuMC Co-Chair & Student Volunteer Programme Ruhr University Bochum, Germany

Friedrich-Alexander University Erlangen-Nürnberg, Germany

General Co-Chair TU Braunschweig, Germany

Friedel Gerfers

Amelie Hagelauer

EuMC TPC chair Fraunhofer EMFT, Germany

Technical University of Berlin, Germany

FuMIC Chair

Corrado Carta

IHP & TU Berlin, Germany

Christian Waldschmidt

University of Ulm. Germany

EuRAD Chair

EuMIC Co-Chair & Student Volunteer Programme

General TPC Chair University of Stuttgart, Germany

Ulrich Lewark

Christina Bonfert

University of Ulm. Germany

Wolfgang Heinrich

Local Arrangement Co-Chair Ferdinand-Braun-Institut, Germany

2.3

EuRAD Co-Chair & Student Volunteer Programme

EuMIC TPC Chair

IMST, Germany

General TPC Co-Chair University of Stuttgart, Germany

llona Rolfes EuMC Chair Ruhr University Bochum, Germany

Marlene Harter EuRAD TPC Chair Offenburg University of Applied Sciences, Germany

Automotive Forum Co-Chair NXP, The Netherlands

DSS Forum Chair Airbus, Germany

Marc van Heijningen

Electronic Submission Chair TNO, The Netherlands

Jasmin Grosinger

Daryna Pesina

Michel Zoghob

Event Director Horizon House, United Kingdom

EuMA Innovation Team & Social Media Editor

0. Ya. Usikov Institute for Radiophysics and Electronics NAS, United Kingdom

Siegbert Martin DSS Forum Co-Chair Tesat-Snacecom, Germany

Norman Franchi

5G to 6G Forum Chair

Cristina Andrei Electronic Submission Co-Chair & WiM Co-Chair Brandenburg University of Technology, Germany

EuMA Treasurer UCL, Belgium

Michael Gadringer Awards and Prizes Committee Chair Graz University of Technology, Austria

Jan Wessel

Benjamin Nuss Publications & Automotive Forum Chair Karlsruhe Institute of Technology, Germany

Martin Kunert Automotive Forum Co-Chair Bosch, Germany

Frank Gruson Automotive Forum Co-Chair ZF, Germany

Kostas Doris

Sally Garland Hotels and Partner Programme Connex Hotels and Events, United Kingdom

Julie Mills

Event Manager Horizon House, United Kingdom

Friedrich-Alexander University Erlangen

Electronic Submission Co-Chair Brandenburg University of Technology, Germany

Robert Weigel 5G to 6G Forum Co-Chair & Sponsoring Chair Friedrich-Alexander University Erlangen-Nürnberg, Germany

Fabian Lurz Tom Brazil Doctoral School Hamburg University of Technology, Germany

Thomas Musch Grants & Visa Chair Ruhr University Bochum, Germany

Lorenz-Peter Schmidt FuMW Officer Friedrich-Alexander University Erlangen-Nürnberg, Germany

Andreas Müller 5G to 6G Forum Co-Chair Bosch, Germany

Holger Maune Student School Otto von Guericke University Magdeburg, Germany

Julia-Marie Köszegi Social Media Chair Fraunhofer Institute for Reliability and Microintegration, Germany

Annemie van Nieuwerburgh EuMA Headquarters Assistant EuMA, Belgium

2022 European Microwave Week in Milan Best Paper Prizes: EuMC

2022 European Microwave Week in Milan Best Paper Prizes: EuRAD

MICROWAVE PRIZE

<u>Authors</u> Elizabeth Bekker, Akanksha Bhutani, Lucas Giroto de Oliveira, Theresa Antes, Thomas Zwick Karlsruhe Institute of Technology

<u>Title</u> Differential Split-Ring Resonator-Based Antenna at 140 GHz in Embedded Wafer Level Ball Grid Array Technology

<u>Sponsors – JMA</u>

EUMC YOUNG ENGINEER PRIZE

<u>Authors</u> Elliott Williams Caltech

<u>Title</u> Meta-Gaps for Mechanically Reconfigurable Phased Arrays

Sponsors - Thales Nederland

EURAD PRIZE

<u>Authors</u> Marius Brinkmann, Frank Gumbmann, Gerhard F. Hamberger, Benedikt Simper Rohde & Schwarz

<u>Title</u> Material Characterization using High-Resolution Multiple-Input Multiple-Output Imaging Radars

<u> Sponsors – Thales Nederland</u>

EURAD YOUNG ENGINEER PRIZE

<u>Authors</u> **Pirmin Schoeder** University of Ulm

<u>Title</u> A Modulation-Based Radar Target Simulator and Its Hardware Nonidealities

Sponsors - Hensoldt Sensors GmbH

EUMC YOUNG ENGINEER PRIZE

<u>Authors</u> **Han Zhou** Chalmers University of Technology

<u>Title</u> Wideband Sequential Circulator Load Modulated Amplifier with Back-off Efficiency Enhancement

2022 European Microwave Week in Milan Best Paper Prizes: EuMIC

EUMIC PRIZE

<u>Authors</u> Luís C. Nunes, João L. Gomes, Filipe M. Barradas, José C. Pedro Universidade de Aveiro

<u>Title</u> A Simple Thermally Activated Trapping Model for AlGaN/GaN HEMTs

EUMA Roberto Sorrentino Prize

THIS ANNUAL AWARD RECOGNIZES AN OUTSTANDING YOUNG PROFESSIONAL WHO IS A EUMA MEMBER WHO HAS DISTINGUISHED TECHNICAL ACHIEVEMENTS WITHIN THE MICROWAVE FIELDS OF INTEREST.

EUMIC YOUNG ENGINEER PRIZE

<u>Authors</u> Andre Engelmann Friedrich-Alexander-Universität Erlangen-Nürnberg

<u>Title</u> Design of two Low DC-Power High-Efficiency D-Band Power Amplifiers in 22 nm FD-SOI

This is the second edition of the prize, named in remembrance of Roberto Sorrentino. The prize has been initiated by Linda Di Carlo Sorrentino in cooperation with RF Microtech, the Italian EM Society (SIEm) and EuMA. Awarded every year for at least ten years, it will recognize an outstanding young professional who has distinguished technical achievements (not on a single paper) within the microwave field. The technical achievements may include technical papers in journals and/or conferences/symposia sponsored or technically sponsored by EuMA. The technical achievements may also include services as a committee member for these Journals and/or conferences/symposia. This prize focuses on the individual rather than the achievements and would preferably be in yearly alternation between university and industry. A nominee must be a member of the EuMA and no more than 38 years of age at the time of nomination deadline (i.e. not having reached their 39th birthday). To help bridge the gender gap in the microwave community however, this deadline is postponed by one year per child for women that have had children. A nomination must be made by a EuMA member (not a student member) who has known the nominee for more than 2 years. Self-nomination is not allowed. Two references in addition to the nominator are required. A selection panel, chaired by a member of the EuMA Board of Directors, selects every year a suitable number of panel members (from 5 to 7), whose names are not public. The Chair does not vote. Because of the large financial coverage, the lury has one member designated by RF Microtech and one by SIEm, respectively. The annual prize comprises a certificate, a medal and a financial award of € 4,000, contributed by Mrs Linda Di Carlo Sorrentino, RF Microtech, SIEm, and EuMA. Collectively this might sustain the prize for a longer period as it is intended to keep the amount of the prize at \notin 4,000 therefore increasing the number of years of availability of the prize beyond 10 years. The prize will be presented at the Opening Session of the European Microwave Week.

> Recipients of the Roberto Sorrentino Prize: 2021: Prof. Dimitra Psychogiou 2022: Dr. Xiaobang Shang

EuMA Outstanding Career Award

THE OUTSTANDING CAREER AWARD WAS ESTABLISHED IN 2008, TO RECOGNIZE AN INDIVIDUAL "WHOSE CAREER HAS EXEMPLIFIED OUTSTANDING ACHIEVEMENTS IN THE FIELD OF MICROWAVES".

2023 RECIPIENT: WERNER WIESBECK

Werner Wiesbeck received the Dipl.-Ing. (M.S.E.E.) and the Dr.-Ing. (Ph.D.E.E.) degrees from the Technical University Munich in 1969 and 1972, respectively. From 1972 to 1983 he was with AEG-Telefunken in various positions including that of Head of R&D of the Microwave Division in Flensburg and Marketing Director Receiver and Direction Finder Division, Ulm. During this period, he had product responsibility for mm-wave radars, receivers, direction finders and electronic warfare systems. From 1983 to 2007 he was the Director of the Institut für Höchstfrequenztechnik und Elektronik (IHE) at the University of Karlsruhe (TH) and he is now Distinguished Senior Fellow at the Karlsruhe Institute of Technology (KIT). Research topics include antennas, wave propagation, Radar, remote sensing, wireless communication, ultra wideband technologies and drone (UAV) security. He is author and co-author of several books and of more than 850 publications, supervisor of more than 90 PhDs, and responsible supervisor of over 600 Diploma-/Master theses and he holds over 60 patents. In 1989 and 1994, respectively, he spent a six-month sabbatical at the Jet Propulsion Laboratory, Pasadena. He is a member of the IEEE GRS-S AdCom (1992-2003). Chairman of the GRS-S Awards Committee (1994-1998, 2002-2017). Executive Vice President IEEE GRS-S (1998-1999). President IEEE GRS-S (2000 - 2001). Associate Editor IEEE-AP Transactions (1996 - 1999), past Treasurer of the IEEE German Section (1987-1996, 2003-2007). He has been General Chairman of the '88 Heinrich Hertz Centennial Symposium, the '93 Conference on Microwaves and Optics (MIOP '93), the Technical Chairman of International mm-Wave and Infrared Conference 2004, Chairman of the German Microwave Conference GeMIC 2006 and he has been a member of the scientific committees and TPCs of many conferences. He was a member of an Advisory Committee of the EU Joint Research Centre (Ispra/ Italy), and he is an advisor to the German Research Council (DFG), to the German Federal Ministry of Education and Research (BMBF) and to industry in Germany.

He is the recipient of a number of awards, lately the IEEE Millennium Award, the IEEE GRS Distinguished Achievement Award, the Honorary Doctorate (Dr. h.c.) from the University Budapest/ Hungary, the Honorary Doctorate (Dr.-Ing. E.h.) from the University Duisburg/Germany, the Honorary Doctorate (Dr.-Ing. E.h.) from the Technische Universität Ilmenau and the IEEE Electromagnetics Award 2008. He is a Life Fellow of IEEE, an Honorary Life Member of IEEE GRS-S, a Member of the Heidelberger Academy of Sciences and Humanities and a Member of the German Academy of Engineering and Technology (acatech). He is a member of the German VDE since 1972 and Fellow VDE-ITG. He is chair of a number of national and international Awards Committees.

EuMA Distinguished Service Award

Lorenz-Peter Schmidt received the Dipl.-Ing. and the Dr.-Ing. degrees in electrical engineering from the Technical University of Aachen, Germany, in 1974 and 1979. In 1979 he joined Prof. Tatsuo Itoh at the University of Texas at Austin as a Post Doc., focusing on the full-wave analysis of quasi-planar transmission lines, especially fin-lines. From 1980 to 1998, he was with AEG-Telefunken, Ulm, Germany (now HENSOLDT), where he later became the Head of the Corporate Advanced Millimeter-Wave Technologies Department. His R&D activities included GaAs MMIC design up to 100 GHz, millimeter-wave interconnect and packaging technologies, radar sensors, transceiver front-end technology, and antennas in the range 10-140 GHz.

From 1998 until his retirement in 2015, he has been a Full Professor and the Head of the Institute of Microwaves and Photonics at the University of Erlangen-Nuremberg, Germany. His main research interests have been in the field of millimeter-wave and terahertz components, antennas, and measurement technologies as well as active and passive high resolution imaging systems. Dr. Schmidt is a Member of VDE and Past-Chairman of the VDE/ITG Expert Group on Microwave Techniques. He is a Life Fellow of the IEEE and a member of the German IEEE MTT/AP Chapter Commission since many years. In 2013 he received the Microwave Prize of the MTT Society. From 2001 to 2010 he was the German Representative in the Eu/A General Assembly. In 2003, he served as the General Chair of the European Microwave Week, in 2007 as the Treasurer, and in 2013 as the Eu/C Chairman. From 2015 until 2017, he was a member of the Eu/A Board of Directors (BoD). Since 2015 he supports European Microwave Week Teams and organizes the know-how transfer, acting as Eu/A's "European Microwave Week Officer" in close coordination with the Eu/A BoD.

2023 RECIPIENT: LORENZ-PETER SCHMIDT

Tom Brazil Fellowship Award Student Essay Competition (by the GAAS® Association) The role of Microwaves for global challenges

The Tom Brazil Fellowship Award by the GAAS® Association is granted to the best essays provided by students pursuing a research degree in RF/Microwave/mmWave electronics. A two-stage approach was taken to select the winners. As a first step, the participating authors submitted a fourpage abstract on their view on "Microwaves in supporting global challenges," using one of the EuMIC conference topics, thus describing what kind of future microwave activities would be important and why. During the paper reviewing process, a shortlist of authors is determined. These authors were requested to provide an extended version of their contribution with a maximum of 4000 words or up to 12 pages.

In a second reviewing step, the best three essays are selected. The shortlist candidates will be presented at the end of the Tom Brazil Doctoral School. To promote their ideas, the finalists will be asked to perform a pitch in the MicroApps area of the Exhibition Hall. The winners of the money prices will be announced during the awards session at the EuMIC closing event. The best essay will be awarded prizes ranging from \notin 1,000 to \notin 2,500.

In this essay competition, we were looking for a summary of the role of RF/Microwaves/mmWave in telecommunications

and other fields which have contributed to remote working (especially during the COVID pandemic) and reducing travel/commuting. Also, for enabling developing countries to build sustainable agricultural and other industries that require good communications infrastructure. The use of THz for forecasting catastrophic weather events has also been an essential and ongoing development. Microwave activity can help in reducing carbon footprint: for example, high-efficiency power amplifiers and other components for base station applications, high-efficiency antenna beam steering architectures. We requested creative and original ideas and suggestions on how future microwave-related research work can be best directed in fulfilling actual and forthcoming global challenges.

'As humans, we have limited time and energy: do something useful' - Prof. Tom Brazil

International Journal of Microwave and Wireless Technologies: Former Best Paper Prizes

The International Journal of Microwave and Wireless Technologies selects one paper per year for the Best Paper Award of the lournal and announces it in the next year. EuMA grants an amount of € 1.000 for this award. In the following, the list of the former recipients of the prizes:

- 1. Muhammad Furgan, Faisal Ahmed, Reinhard Feger, Klaus Aufinger, Walter Hartner, Andreas Stelzer, "A SiGebased fully-integrated 122-GHz FMCW radar sensor in an eWLB package," International Journal of Microwave and Wireless Technologies, 2017, 9 (6), 1219-1230.
- 2. Marco Dietz, Andreas Bauch, Klaus Aufinger, Robert Weigel, and Amelie Hagelauer, "A 1 to 32 GHz broadband multi-octave receiver for monolithic integrated vector network analyzers in SiGe technology," International Journal of Microwave and Wireless Technologies, 2018, 10 (5/6), 717-728.
- 3. Golzar Alavi, Sefa Özbek, Mahsa Rasteh, Markus Grözing. Manfred Berroth. Ian Hesselbarth. and Joachim N. Burghartz. "Toward a flexible and adaptive wireless hub by embedding power amplifier thinned silicon chip and antenna in a polymer foil." International Journal of Microwave and Wireless Technologies, 2019, 11 (5/6), 864-871.
- 4. Iulia Dan, Guillaume Ducournau, Shintaro Hisatake, Pascal Szriftgiser. Ralf-Peter Braun. and Ingmar Kallfass. "A superheterodyne 300 GHz wireless link for ultra-fast terahertz communication systems." International Journal of Microwave and Wireless Technologies, 2020, 12 (7), 578-587.
- 5. Philipp Ritter, "Toward a fully integrated automotive radar system-on-chip in 22 nm FD-SOI CMOS," International Journal of Microwave and Wireless Technologies, 2021, 13 (6), 523-531

EuMA and EuMW Committees

EUMA GENERAL ASSEMBLY

Board of Directors: Frank van den Bogaart Gilles Dambrine · Andrew Gibson · Willem Hol Renato Lombardi · Luca Perregrini · Herbert Zirath · Danielle Vanhoenacker-Janvier · Volker Ziegler · Thomas Zwick

EuMW Chairs: Luca Perregrini, EuMW'22 · Thomas Zwick, EuMW'23 · Guillaume Ducournau, EuMW'24

Ordinary Members: Nathalie Deltimple, Group 1 · Nils Pohl, Group 2 · Alessandra Costanzo, Group 3 · Xiaobang Shang, Group 4 · Dominique Schreurs, Group 5 · Morten Olavsbraten, Group 6 · Ville Viikari, Group 7 · Zsolt Szabó, Group 8 · Lukasz Kulas, Group 9 · Felix Yanovsky, Group 10 · vacancy, Group 11 · Michael Ernst Gadringer. Group 13 · Nuno Borges Carvalho, Group 14 · Dick Snyder, Group 15 · Kenjiro Nishikawa, Group 16 · Hadia Elhennawy, Group 17

Founder Members: Leo Ligthart · Asher Madjar Holger Meinel · Steve Nightingale · Roberto Sorrentino † · André Vander Vorst IJMWT Editor-in-Chief: Marco Pasian EuMA Honorary Secretary: Andrew F Wilson By invitation: Wolfgang Heinrich, Past President · Robert Weigel, MTT-S Observer · Almudena Suárez Rodríguez, Publication Officer · Lorenz-Peter Schmidt, EuMW Officer · Annemie Van Nieuwerburgh, HQ Assistant Countries Represented: Group 1 - France. Mo-

EUMW STEERING COMMITTEE

EuMA Board of Directors

EuMW Officer: Lorenz-Peter Schmidt GAAS[®] Representative: Paolo Colantonio **EuMW Chairs:** Luca Perregrini. EuMW 2022 Thomas Zwick, EuMW 2023 · Guillaume Ducournau, EuMW 2024 · Mark Bentum, EuMW 2025 · Stephen Harman, EuMW 2026 MTT-S Observer: Robert Weigel Conference Software Officers: Marc van Heijningen · Matthias Rudolph · Christina Andrei APMC Delegate 2022 - 2024: Wenguan Che 2022 Conference Chairs, TPC Chair and Treasurer: Maurizio Bozzi, TPC Chair · Alessandra Costanzo. EuMC · Paolo Colantonio. EuMIC · Pierfrancesco Lombardo, FuRAD · Luciano Tarricone. Treasurer

2023 Conference Chairs, TPC Chair and Treasurer: Ingmar Kallfass, TPC Chair · Ilona Rolfes, EuMC · Friedel Gerfers, EuMIC · Christian Waldschmidt, EuRAD · Martin Vossiek, Treasurer 2024 Conference Chairs, TPC Chair and Treas**urer:** Aurelian Crunteanu, TPC Chair · Anthony Ghiotto, EuMC · Nathalie Deltimple, EuMIC · Guido Valerio, EuRAD · Mohammed Zaknoune.

Treasurer EuMW Operational Officers 2022-2025:

EUMW TECHNICAL PROGRAMME COMMITTEE

EuMC: Olof Bengtsson · Mark Bentum · Akanksha Bhutani · Pierre Blondy · Nuno Borges Carvalho · Vicente Boria · Maurizio Bozzi · Diego Caratelli · Christian Carlowitz · Wenguan Che · Alessandra Costanzo · Aurelian Crunteanu · Christian Damm · Guillaume Ducournau · Marco Farina · Allessandro Galli · Matthias Geissler · Anthony Ghiotto · Kamran Ghorbani · Frederic Gianesello · Gerald Gold · Katia Grenier · Iasmin Grosinger · Amelie Hagelauer · Marlene Harter · Laure Huitema · Mehmed Kavanak · Alexander Kölpin · Ioan Lager · Miguel A. G. Laso · Tuami Lasri · Ulrich Lewark · Yinggang Li · Giuseppe Macchiarella · Ferran Martin · Stefania Monni · Michal Mrozowski · Thomas Musch · Joachim Oberhammer · Jose Pedro · Luca Perregrini ·

Douglas Petkie · Ilona Piekarz · Zova Popovic · Dimitra Psychogiou · Nick Ridler · Hendrik Rogier · Lorenz-Peter Schmidt · Dominique Schreurs · Hialti Sigmarsson · Jakub Sorocki · Angela Stelson · Almudena Suarez Rodriguez · Oleskiv Sydoruk · Luciano Tarricone · Cristiano Tomassoni · Vittorio Tornielli di Crestvolant · Thomas Ussmueller · Ian Vbra · Ville Viikari · Yi Wang · Gavin Watkins · Nils Weimann · Ke Wu · Marwan Younis · Ashraf Uz Zaman · Anding Zhu

EuMIC: Shmuel Auster · Alessandro Cidronali Paolo Colantonio · William Deal · Natalie Deltimple · Aleksey Dyskin · Franco Giannini · Rocco Giofré · Vadim Issakov · Andrea Malignaggi · Teresa Martin-Guerrero · Marion Matters-Kammerer ·

naco · Group 2 - Germany · Group 3 - Italy. San Marino. Vatican City · Group 4 - United

Kingdom, Ireland, Gibraltar, Malta · Group 5 - Belgium, The Netherlands, Luxembourg · Group 6 - Iceland, Norway, Sweden · Group 7 -Denmark, Faroe Islands, Finland, Greenland · Group 8 - Bulgaria, Czech Republic, Hungary, Romania, Slovakia · Group 9 - Estonia, Latvia, Lithuania, Poland · Group 10 - Armenia, Azerbaijan, Georgia, Moldova, Ukraine · Group 11 - Albania, Bosnia and Herzegovina, Croatia, Cyprus, FYR Macedonia, Montenegro, Greece, Israel, Serbia, Slovenia, Türkiye · Group 13 - Austria, Liechtenstein, Switzerland · Group 14 – Andorra, Portugal, Spain · Group 15 - North America · Group 16 - Asia-Pacific · Group 17 - Africa and Middle East countries

Lorenzo Silvestri. 2022 Oper. Officer · Akanksha Bhutani, 2023 Oper, Officer · Francois Danneville. 2024 Oper. Officer · David Prinsloo. 2025 Oper, Officer

HH Representatives: Ivar Bazzy, President Michel Zoghob, Event Director

By Invitation: Wolfgang Heinrich, Past President · André Vander Vorst, Secretary Emeritus/ DPO · Andrew F. Wilson, Hon. Secretary · Almudena Suárez Rodríguez, Publ. Officer · Annemie Van Nieuwerburgh, HQ Assistant

lean-Christophe Nallatamby · Rüdiger Ouav · Christoph Schevtt · Patrick Schuh · Hermann Schumacher · Ho-lin Song · Frank van de Bogaart · Frank van Vliet · Hua Wang · Lars-Erik Wernersson · Herbert Zirath

EuRAD: Laura Anitori · Michael Antoniou · André Bourdoux · Thomas Dallmann · lacco de Wit · Reinhard Feger · Laurent Ferro-Famil · Marina Gashinova · Maria Greco · Stephen Harman · Juergen Hasch · Willem Hol · Stéphane Kemkemian · Jerzy Kowalewski · Pierfrancesco Lombardo · Marco Martorella · Stéphane Méric · Mayazzurra Ruggiano · Hasan Sharifi · Claudia Vasanelli · Matthias Weiss · Felix Yanovsky · Alex Yarovoy

EuMW 2023 Reviewers To our reviewers: Thank you for your great work!

EUMW REVIEWERS

A: Elena Abdo-Sánchez, Edward Ackerman, Giuseppe Addamo, Janne P. Aikio, Beatriz Aja, Mohamad Basim Alabd, Lutfi Albasha, Federico Alimenti, Rozenn Allanic, José-Ignacio Alonso, Arokiaswami Alphones, Giandomenico Amendola, Cristina Andrei, Mykhaylo Andriychuk, Iltcho Angelov, Laura Anitori, Michael Antoniou, Francesca Apollonio, Fritz Arndt, Holger Arthaber, Hervé Aubert, Klaus Aufinger, Shmuel Auster, Serdal Ayhan

B: Damienne Bajon, Denis Barataud, Pawe_ Barmuta, Jan Barowski, César Barguinero Gómez, Filipe Barradas, Juraj Bartolic, Francesca Benassi, Brahim Benbakhti, Jessica Benedicto, Johannes Benedikt, Olof Bengtsson, Mark Bentum, Tibor Berceli, Eric Bergeault, Manfred Berroth, Alexandre Bessemoulin. Akanksha Bhutani. Stéphane Bila, Rodrigo Blazquez-Garcia, Hans-Ludwig Bloecher, Pierre Blondy, Luigi Boccia, Georg Boeck, Antonella Bogoni, Nuno Borges Carvalho, Vicente E, Boria, Serge Bories, lens Bornemann, André Bourdoux, Maurizio Bozzi, Christian Bredendiek, Jack Brunning, Christian BRYLINSKI, Djuradj Budimir, Pascal Burasa

C: Pedro Miguel Cabral, Vittorio Camarchia, Juan Luis Cano, Tommaso Cappello, Laura Caramazza, Diego Caratelli. Christian Carlowitz. lavier Carretero Mova. Vincenzo Carrubba. Corrado Carta. Robert Caverly. Jean-Louis Cazaux, Malgorzata Celuch, Subhradeep Chakraborty, Sébastien Chartier, Wenquan Che, Pascal Chevalier, Debabani Choudhury, Alessandro Cidronali, Kevin Cinglant, Elisa Cipriani, Paolo Colantonio, Micol Colella, Giovanni Collodi, Alessandra Costanzo, Luis Cotimos Nunes, Angela Coves, Diego Cristallini, Aurelian Crunteanu, Iñigo Cuiñas

D: Thomas Dallmann, Gilles Dambrine, Christian Damm, Patrik Dammert, François Danneville, Jean-Yves Dauvignac, Peter de Hek, Luisa de la Fuente, Gonzalo de Miguel Vela, Pedro de Paco, Jacco de Wit, William Deal, Jochen Dederer, Christophe Delaveaud, Sebastien Delcourt, Nicolas Delhote, Nicolò Delmonte, Nathalie Deltimple, Simona Di Meo. Sebastian Diebold. Jian Ding. Yassen Dobrev. Ralf Doerner. Simona Donati Guerrieri. Anand Dubey, David Dubuc, Guillaume Ducournau, Yvan Duroc, Aleksev Dvskin

E: lens Engelmann

F: Christian Fager, Marco Farina, Lourdes Farrugia, Reinhard Feger, Michael Feiginov, Mónica Fernández Barciela, Laurent Ferro-Famil, Laila Fighera Marzall, Fabio Filicori, Michele Fiorini, Georg Fischer, Nelson Fonseca, Erwan Fourn. Anne-Laure Franc. Marc Franco. Thomas Fromenteze, Dominic Funke

G: Ahmed Gadallah, Michael Ernst Gadringer, Gaspare Galati, Alessandro Galli, Jose A. Garcia, Alejandro García-Tejero, Markus Gardill, Marina Gashinova, Mike Geen, Matthias Geissler, Apostolos Georgiadis, Bertrand Gerfault, Friedel Gerfers, Giovanni Ghione, Anthony Ghiotto, Kamran Ghorbani, Frédéric Gianesello, Franco Giannini, Gian Piero Gibiino, Pere L. Gilabert, Raphaël Gillard,

Rocco Giofrè. Elisa Giusti. Roberto Gomez-Garcia. Iose Manuel Gonzalez Perez, Katia Grenier, Ian Gresham, Jasmin Grosinger, Markus Grözing, Cheng Guo

H: Amelie Hagelauer, Mehrdad Hajivandi, Jonas Hansryd, Stephen Harman, Marlene Harter, Jürgen Hasch, Dirk Heberling, Wolfgang Heinrich, Reinhold Herschel, Jeffrey Hesler, Jan Hesselbarth, Michael Höft, Willem A. Hol, Jiasheng Hong, Rui Hou, Zhirun Hu, Philipp Hügler, Laure Huitema

I: Isabelle Huynen, Vadim Issakov, Kenji Itoh,

J: Arne F. Jacob, Timo Jaeschke, Mohammed Jahangir, Rolf Jakoby, María-Pilar Jarabo-Amores, Olivier Jardel, Bernard Jarry, John Jelonnek

K: Tom Keinicke Johansen, Ari Joki, Ingmar Kallfass, Despoina Kampouridou. Tomova Kaneko. Mehmet Karaaslan, Mehmet Kavnak, Stéphane Kemkemian, Asim Ali Khan. Sourabh Khandelwal. Dmitry Kholodnyak. Bumman Kim, Dietmar Kissinger, Tero Kiuru, Iens Klare, Ludger Klinkenbusch, Peter Knott, Stefan Koch, Toshiro Kodera. Stephan Kolb, Alexander Kölpin, Jerzy Kowalewski. Oleg Krasnov. Gerhard Krieger. Viktor Krozer. Wei-Min (Lance) Kuo

L: Ariana Lacorte Caniato Serrano, Ioan E. Lager, Jérôme Lanteri, Claudio Lanzieri, Miguel A. G. Laso, Tuami Lasri, David Lautru, Mathieu Le Breton, Laurent Le Coq, Rémy Leblanc, Hervé Leblond, Timothy Lee, Friedrich Lenk, Yoke Choy Leong, Chong Li, Yinggang Li, Ernesto Limiti, Julien Lintignat, Ignacio Llamas, Matteo Bruno Lodi, Lai Bun Lok, Pierfrancesco Lombardo, Patrick Ettore Longhi, Errikos Lourandakis, Xun Luo, Fabian Lurz, Cyril Luxev. Guido Luzi

M: Tzyh-Ghuang Ma, Giuseppe Macchiarella, Jan Machá_, Stefano Maddio, María J. Madero-Avora, Asher Madjar, Simon J. Mahon, Mateusz Malanowski, Andrea Malignaggi, Robert Malmovist, Dirk Manteuffel, Paulo Margues, Ferran Martín, Marta Martinez-Vazguez, Teresa M. Martín-Guerrero, ukasz Ma likowski, Diego Masotti, Marion Matters, Holger Maune, Dominic Maurath. Markus Maver, Giuseppe Mazzarella, Francisco Medina, Stéphane Méric. Francisco Mesa. Claire Migliaccio. Konstantinos Mimis, lozef Modelski, Privanka Mondal, Stefania Monni, Giuseppina Monti, Gabriel Montoro, Alberto Moreira, Antonio Morini, Michal Mrozowski, Jan-Erik Mueller, Daniel Müller-Remer, José-María Muñoz-Ferreras, Hiroshi Murata, Thomas Musch

N: lean-Christophe Nallatamby, Nasrin Nasr Esfahani, Bart Nauwelaers. Irina Nefedova. Guillaume Neveux. Herman Jalli Ng. Fatemeh Norouzian. Mvriam Nouvel. Beniamin Nuss, Dirk Nüßler

0: Joachim Oberhammer, Matthew OKeefe, Morten Olavsbråten, Arnaldo Oliveira, Giacomo Oliveri, Rosa Orlacchio, Alicja Ossowska

P: Cristiano Palego, Gustavo Pamplona Rehder, Giacomo Paolini, John Papapolymerou, Youngjin Park, Marco Pasian, Daniel Pasquet, Marco Passafiume, Mario Pauli,

Alain Peden, José Carlos Pedro, Luca Pelliccia, Felipe L. Peñaranda-Foix, André Perennou, Luca Perregrini, Christian Person, Doug Petkie, Nikita Petrov, Gia Ngoc Phung, Ilona Piekarz, Marco Pirola, Emanuele Piuzzi, Nils Pohl, Jean-Luc Polleux, Zoya Popovic, Milica Popovi_, Benjamin Potelon, Gaëtan Prigent, Dimitra Psychogiou Q: Rüdiger Quay, Abdul Quddious

R: Antonio Raffo, Antti Räisänen, Franco Ramirez, Andreas Reigber, David Ricketts, Nick Ridler, Matthew Ritchie, Philipp Ritter, Eric Rius, Stéphane Rochette, Helena Rodilla, António Rodrigues, Hendrik Rogier, Yves Rolain, Ilona Rolfes, Manuel Rosa-Zurera, Luke Rosenberg. Mavazzurra Ruggiano. lorge A. Ruiz-Cruz

S: Amr Safwat, Martin Salter, Kamal Samanta, Piotr Samczy ski. Atsushi Sanada. David A. Sanchez-Hernandez. Miguel Sanchez-Soriano, Philip Sanders, Alberto Santarelli, Fabrizio Santi, Bruno Sauviac, Patrick Scheele, Christoph Scheytt, Tom Schipper, Lorenz-Peter Schmidt, Dominique Schreurs, Patrick Schuh, Christian Schulz, Hermann Schumacher, Daniel Segovia-Vargas, Stefano Selleri. Alexandre Serres. Xiaobang Shang. Hasan Sharifi. Naoki Shinohara. Oksana Shramkova. Uwe Siart. Manuel Sierra Castañer. Hialti H. Sigmarsson. Alexandre Siligaris, Lorenzo Silvestri, Yoke Leen Sit, Talal Skaik, Robin Sloan, Richard Snyder, Jacques Sombrin, Nutapong Somjit, Raphaël Sommet, Ho-Jin Song, Jakub Sorocki, Andreas Springer, Jan Stake, Manoj Stanley, Robert Staraj, Joseph Staudinger, Angela Stelson, Almudena Suarez Rodriguez, Safumi Suzuki, Oleksiy Sydoruk, Bela Brian Szendrenvi

T: Alexandru Takacs, Gérard Tanné, Thierry Taris, Luciano Tarricone, Chakib Taybi, Manos M. Tentzeris, Arno Thielens, Reiner S. Thomä, Manfred Thumm, Harrie Tilmans, Cristiano Tomassoni, Vittorio Tornielli di Crestvolant, Éric Tournier, Ichihiko Toyoda, Pier Andrea Traverso, Nikolaos Tsitsas. Stefano Turso

U: Ingrid Ullmann. Ahmet Ca ri Ulusov. Thomas Ußmüller. Faruk Uvsal

V: Valeria Vadalà, Václav Valenta, Wim van Cappellen, Giis van der Bent. Marc van Heijningen. Frank E. van Vliet, André Vander Vorst, Danielle Vanhoenacker-lanvier, Giorgio Vannini, Claudia Vasanelli, Andriv Vasvlvev, Dmytro Vavriv, Serge Verdeyme, Jordi Verdú, Valérie Vignéras, Jean-Francois Villemazet, Shelly Vishwakarma. Michael Vogt, Martin Vossiek, Jan Vrba, Tan-Phu Vuong

W: Simon Wagner, Steffen Wälde, Christian Waldschmidt, Huei Wang, Yi Wang, Yide Wang, Gavin Watkins, Robert Weigel, Nils Weimann, Matthias Weiss, Andreas Wentzel, Jan Wessel, Abdulrahman Widaa, Bianca Will, Tudor Williams, Ke Wu, Zhipeng Wu

Y: Hady Yacoub, Li Yang, Felix Yanovsky, Alexander Yarovoy, Naruto Yonemoto, Ming Yu

Z: Ashraf Uz Zaman, Marco Zappatore, Anding Zhu, Volker Ziegler, Herbert Zirath

HOW TO GET TO MESSE BERLIN

Venue Address

Messe Berlin hub27 lafféstraße 2. Tor 25 14055 Berlin GPS: 52°30'11.2"N / 13°16'03.9"E

Bv Public Transport

Berlin public transport is provided by the BVG (https://www.bvg.de/en). A standard ticket is valid for S-Bahn, U-Bahn, Bus and Tram, also most regional trains are included.

<u>S-Bahn station:</u> Messe Süd (S3, S9) U-Bahn station: Theodor-Heuss-Platz (U2) Bus stop: Messegelände/ICC (143, 349 and N43)

The S-Bahn station is closest to hub27.

Important Information

The delegate badges and registration

HOTEL RESERVATION

Horizon House has teamed up with Connex Hotels and Events. our official hotel booking supplier, to offer you the ability to book your accommodation for EuMW at the most competitive rates available. It is very easy to make an immediate hotel booking.

Simply visit their booking page: http://www.connexhotelsandevents.com/eumw.html and make your booking, or email: <u>sally@connexhotelsandevents.com</u>.

You will find a wide range of accommodation to suit every budget. Alternatively, see the hotel booking pages within this programme.

confirmation e-mails also include a ticket for the public transport in Berlin which is valid from September 16-22. The ticket is valid for the fare zones A. B. and C (https://sbahn.berlin/en/tickets/the-vbbfare-explained/fare-zones/) which cover the complete city of Berlin including the connection to the airport BER. For details on how to use the ticket see the EuMW website.

By Train

Trains are run by Deutsche Bahn (https://www.bahn.com/en). All trains stop at central station (Hauptbahnhof). Some trains have additional stops like Gesundbrunnen, Südkreuz or Charlottenburg. When you book your ticket, you can give the nearest S-Bahn station to your hotel/ the venue as arrival point without extra fee. Messe Berlin offers special deals on train tickets (https://www.messe-berlin. de/en/visitors/arrival-departure/arrival/)

From the Airport

The BER Airport is located in the south east of Berlin. The nearest other options are to fly to Leipzig/Halle, Dresden, Braunschweig, Hannover or Hamburg Airports and continue by train. When arriving at BER:

Option 1, by train: regional train (RE7 to Dessau, RB14 to Nauen) or Airport Express Train (FEX to Hauptbahnhof) Option 2, by S-Bahn: S9 to Spandau or S45 to/via Südkreuz Option 3, by car: Taxi and car rental are available at the airport.

By Car

The parking lots P17 and P18 can be used for € 20/day/car.

PERSONAL INVITATION (VISA)

- A valid passport will be required for entry into the organising country, in this case Germany, A German visa may also be required for the purpose of attending EuMW and we suggest you check with your local embassy. If you are registering as a speaker, a delegate or an exhibitor and you need a visa, we recommend that you contact the German Embassy, in your own country at least 3 months prior to EuMW. The organisers will be pleased to send a letter of invitation to any speaker, exhibitor or conference delegate requesting it to assist with their visa application.
- In order to request a letter of invitation, please download and complete the request form found here: EUMW2023 VISA RE-QUEST FORM and send it to the visa operational officer: visa. chair.eumw2023@eumwa.org

lere

a I

Local Information and Insurance

WI-FI

Wi-Fi is available in the exhibition hall and conference area. Login details can be found within your delegate bag.

CREDIT CARDS

All major hotels and most restaurants and shops will accept credit cards. It is advisable to carry other identification as well. Visa and MasterCard are the most widely accepted cards.

HISTORY & SIGHTSEEING

Once divided in East and West Berlin during the Cold War, the German capital Berlin has become a major player in the European start-up scene offering young entrepreneurs a unique inventive spirit, international ambiance, and an active venture capital scene. Berlin accommodates an unforgettable variety of culture to experience and history

Conference Information

BADGES AND REGISTRATION

The registration area will be located directly at the hub27 entrance. Online registrants will automatically be e-mailed their badge barcode and an order confirmation receipt immediately after they pay. All those who have pre-registered should bring their badge barcode and confirmation with them to the conference where they can print out their badge by scanning their barcode at the Fast Track desk onsite. Processing will be quick and easy but queues may form at busy times, so please arrange to collect your badge well in advance of your first conference session. Those who have not pre-registered can do so on site until 22nd September 2023. There will be on-site registration terminals located within the registration area, where delegates can enter their details and pay immediately by swiping their credit or debit cards through the card readers attached to the terminals. Alternatively, you can pay at the Cashier desk if vou require a printed receipt. If you have any questions regarding registration procedures and payment, please email:

- Conf. Registration: registration.eumw2023@eumwa.org
- Exhibition Registration: exhibitionreg@eumweek.com

CONFERENCE ROOMS

Conference rooms are located on levels Alpha (0), Beta (1) and Gamma (2) of the venue as signposted. The conferences will be held in different rooms over the conference dates. Please refer to the Conference Matrix in this booklet for a detailed overview. Delegates can register for one, two or all three of the conferences. Registration at one conference does not allow any access to other conference sessions. Those who wish to register for two or more conferences will receive a discount on these registrations.

INSURANCE

It is highly recommended that all participants carry the proper travel and health insurance, as the organiser cannot accept any liability for any accident, illness, or injury that occur during or when travelling to the event. Please also insure that personal items are covered for loss, damage or theft either through a personal policy or by a corporate policy. We cannot accept any liability for personal items that are lost, damaged or stolen during or travelling to and from European Microwave Week 2023.

to touch such as the East Side Gallery, being the longest

open-air art gallery in the world, the Brandenburg Gate,

the Reichstag, seat of the German parliament, Checkpoint

Charlie, or the Museumsinsel. With public transport stops

within a radius of 500 metres throughout Berlin, exploring

the city has never been easier. Famous for its Currywurst,

Berlin offers a unique culinary experience with restaurants for every budget, a craft beer scene and is one of the most

vegan-friendly cities in the world. Berlins exciting nightlife

with countless bars, pubs, and clubs invites everyone to

have an unforgettable experience. For more information,

visit https://www.visitberlin.de/en.

INTERACTIVE SESSIONS

The interactive poster papers will be presented on electronic screens, which are located in the exhibition area as signposted on Tuesday, Wednesday and Thursday.

EXHIBITION HOURS

The exhibition area will be located in the hub27 hall at ground level alpha as shown on the Floor Plan in this booklet. As a registered delegate you will have full access to the exhibition area. The exhibition opening hours are:

- Tuesday 19th September 2023, 9:00 18:00
- Wednesday 20th September 2023, 9:00 17:30
- Thursday 21st September 2023, 9:00 16:30

See the back cover for a full listing of the exhibitors (correct at the time of going to press).

CONFERENCE PROCEEDINGS

All papers published for presentation at your chosen conference will be available to download from an online repository. Please check the web site www.eumweek.com.

Hotel Booking Form September 2023

Rooms are held on a guaranteed basis. For this reason, you are asked to supply a credit card number and full company details. If your travel plans change and you wish to cancel your accommodation, please contact Sally Garland on +44 (0)7775 744193 or email sally@connexhotelsandevents.com to avoid any non-arrival or cancellation charges, as each hotel has a different cancellation policy, full cancellation details will be clearly marked on every booking confirmation. Prepay rates are non-refundable and non-cancelable.

FOR MORE HOTEL OPTIONS AND TO RESERVE YOUR	ROOM ONLINE VISIT
http://www.connexhotelsandevents.com/eumw.html	
Or complete the booking form below and email to sally@conne	exhotelsandevents.com
Contact Name	Company
Address	
City	Post Code
Telephone	Fax
Email	
Date of Arrival	Date of Departure
Number of rooms required	
Single Room(s) Twin Room(s) Double Roo	om(s)
First Choice Hotel	Second Choice Hotel
L Guest Names	
In order to guarantee the accommodation, please provide us with your cr	redit card details:
L Credit Card Number	Name on Card Expiry Date
	LApir y Date
	a da Canana ha dana an Canadan will ha da ana da akia an dia and

Dr complete the booking form below and email to <u>sally</u>	<u>@connexhotelsandevents.com</u>	
Contact Name	Company	
Address		
City	Post Code	
[elephone	Fax	
Email	1	
Date of Arrival	Date of Departure	
Single Room(s) Twin Room(s) Da	uble Room(s)	
irst Choice Hotel	Second Choice Hotel	
Guest Names		
n order to guarantee the accommodation, please provide us wit	h vour cradit card datails:	
		/
Credit Card Number	Name on Card	Expiry Date
authorise that any no show or late cancellation charges, as sti	ulated in the Connex booking confirmation will be charged to) this credit card.
		Hotels and Eve

ġ I

- I

HOTEL	TO HUB27	RATES I	FROM*	
MELIA BERLIN HOTEL	30 minutes by Rail		€ 195.00	B&B
Friedrichstraße 103, 10117 Berlin	20 minutes by Car/Taxi		€ 377.00	B&B
B&B HOTEL BERLIN-CHARLOTTENBURG	25 minutes by Rail		€ 210.50	B&B
Kaiserdamm 117, 14057 Berlin	7 minutes by Car/Taxi		€ 244.00	RO
NUMA NOVELA HOTEL & APARTMENTS	30 minutes by Rail		€ 165.00	B&B
Konstanzer Str. 1, 10707 Berlin	10 minutes by Car/Taxi		€ 170.00	RO
INTERCITYHOTEL BERLIN CENTRAL STATION Katharina-Paulus-Straße 5, 10557 Berlin	30 minutes by Rail		€ 159.00 € 238.00	B&B B&B
GOODMAN'S LIVING APARTMENTS	25 minutes by Rail		€ 129.50	RO
Wilmersdorfer Str. 36, 10585 Berlin	7 minutes by Car/Taxi		€ 145.00	RO
LEONARDO HOTEL BERLIN	30 minutes by Rail	Prepay	€ 167.00	B&B
Wilmersdorfer Str. 32, 10585 Berlin	10 minutes by Car/Taxi	Flexible	€ 186.00	B&B
CITADINES BERLIN OLIVAER PLATZ	30 minutes by Rail	Prepay	€ 171.00	RO
Olivaer Pl. 1, 10707 Berlin	9 minutes by Car/Taxi	Flexible	€ 189.00	B&B
ASPRIA BERLIN KU'DAMM	27 minutes by Rail	Prepay	€ 192.00	RO
Karlsruher Str. 20, 10711 Berlin	7 minutes by Car/Taxi	Flexible	€ 202.00	RO
NOVUM HOTEL KRONPRINZ	23 minutes by Rail	Prepay	€ 198.00	B&B
Kronprinzendamm 1, 10711 Berlin,	5 minutes by Car/Taxi	Flexible	€ 202.00	B&B
HOTEL VILLA KASTANIA Kastanienallee 20, 14052 Berlin	18 minute Walk 3 minutes by Car/Taxi	Flexible	€ 186.00	RO
HOTEL MARGRIT Brandenburgische Str. 24, 10707 Berlin	29 minutes by Rail 8 minutes by Car/Taxi	Prepay	€ 90.00	B&B
HOTEL KU' DAMM 101	29 minutes by Rail	Prepay	€ 179.00	B&B
Kurfürstendamm 101, 10711 Berlin	6 minutes by Car/Taxi	Flexible	€ 200.00	B&B
COME INN HOTEL	30 minutes by Rail	Prepay	€ 165.00	B&B
Kurfürstendamm 180, 10707 Berlin	9 minutes by Car/Taxi	Flexible	€ 183.00	B&B
HOTEL-PENSION BERNSTEIN Nürnberger Str. 46, 10789 Berlin	33 minutes by Rail 11 minutes by Car/Taxi	Prepay	€ 109.00	B&B
PREMIER INN BERLIN CITY WILMERSDORF HOTEL Bundesallee 14, 10719 Berlin	37 minutes by Rail 9 minutes by Car/Taxi	Flexible	€ 133.00	RO

*All rates quoted include VAT at the current rate. City Tax is extra and will be charged directly by the hotel per night

**Special Event Rates are only bookable via this form or direct with sally@connexhotelsandevents.com

Prepay: Room rate will be charged at the time of booking, to the credit card used to guarantee the reservation, after this the room is non-refundable.

Flexible: Room can be cancelled or amended up until a few days before arrival, individual policy will be stated on the booking confirmation.

RO: Room rate does not include breakfast; however, breakfast is available at the hotel at an extra cost.

B&B: Room rate includes breakfast.

INTERNSHIP AWARD

RESEARCH + INDUSTRY

This November 2023, the EuMA Innovation Team is launching the sixth edition of the EuMA Internship Award. Every year up to seven awards of 4500€ each will be given to selected Master and PhD students to spend a period of at least 3 months abroad in one of the leading European Microwave Industries, Universities, and Research Institutes supporting this initiative.

In addition to promote the mobility of students that would like to work in the microwave field across European Institutions, the award will also attract new talents to the hosting organizations and will help creating a larger and stronger community of microwave young professionals.

Master and Doctoral students with a background in Engineering, Computer Science, Mathematics or Physics can apply using the **QR Code**. The deadline for application is set to November 28, 2023.

APPLICATION PROCEDURE

- Ι. Select a host and log in into the EuMA website to fill out the application form
- II. EuMA will notify of a preacceptance by 13.1.2024
- **III.** Set-up the interview with the host institution before 13.4.2024

EUMA European Microwave Association

IV. Final notification acceptance by 30.4.2024

Responsible Publisher : Daryna Pesina - EuMA aisbl - Rue Louis de Geer 6 - B-1348 Louvain-la-Neuve, Belgium

EARN 4.500€

WHO

PhD and Master students with a background in Engineering, Computer Science, Mathematics or Physics

WHERE

In leading European Microwave Industries, Universities and Research Institutes

WHAT

Internship abroad of at least 3 Months within 1 year from acceptance notification

WHEN

Submission deadline

28.11.2023

INFOS & CONTACT

Innovation TEA/V

Web: www.eumwa.org

Email: internships@eumwa.org

PROMOTING EUROPEAN MICROWAVES

Welcome to Berlin!

With almost four million people calling the city home. Berlin's position as a global melting pot of art, culture, politics, and technology is constantly evolving. You can easily immerse yourself in it all and make the most of your time in the German capital, from going inside some of history's most storied landmarks to fitting in with modern-day Berliners.

If you would like more details and costs of the attractions or tours that are not linked directly, please contact Sally Garland at sally@connexhotelsandevents.com.

HOP-ON HOP-OFF BUS TOUR WITH LIVE COMMENTARY

Experience a Berlin city tour with live commentary.

Explore Berlin at your own pace from the roof of a double-decker bus. hop on and hop off as much as you like, stop at all the must-see attractions such as Checkpoint Charlie. Brandenburg Gate, the New Church (Deutscher Dom) and many more including a Cruise on the river Spree. Free WiFi on the bus.

With departures every 10-15 minutes you can hop on and off as you please at any of the 18 stops and discover the city at your own pace. The first bus stop is located at Kurfürstendamm 238.

> Cost from € 20.00 per person (Boat Tour Option extra)

GUIDED CRAFT BEER & CULTURAL TOUR WITH SNACKS

Discover the former East Berlin district of Friedrichshain on a guided craft beer tour. Visit microbreweries and brewpubs to sample handcrafted beers and savour a selection of snacks chosen to complement the beer.

Cost from € 89.00 per person

3.25-HOUR SPREE & LANDWEHR-**KANAL BOAT TOUR**

Discover the Berlin skyline on a city cruise and see more than 40 bridges over the Landwehr Canal and river Spree. Admire the diverse architecture of the city, including Museum Island.

Cost from € 27.50 per person

PERGAMON & NEW MUSEUM TOUR AND MUSEUM ISLAND PASS

Discover Berlin's world-famous Museum Island. Explore the wonders of ancient Egypt, Babylon, Greece and Rome on this exclusive tour through two remarkable museums: The Pergamon and the New Museum.

Cost from € 59.00 per person

BERLIN WALL MUSEUM AT CHECK-POINT CHARLIE

Visit the Berlin Wall Museum at Checkpoint Charlie. Founded shortly after the construction of the Berlin Wall, this museum had a vital role in history and the objects on display in the museum provide evidence of this.

Cost from € 17.50 per person

THE BERLIN CARD

Explore Berlin with a 2, 3, 4, 5, or 6-day Berlin Welcome Card. Ride public transport in the ABC zones, including Berlin Brandenburg Airport, receive discounts of up to 50 % with many partners, and benefit from the pocket travel guide.

75-MINUTE TRABI SAFARI

Cost from € 30.00 per person

Drive through Berlin in the official car of the DDR. Squeeze vourself behind the wheel of a Trabant of your choice and putter around the capital. See the most interesting sights and get your very own souvenir Trabant-driver's license!

Cost from € 69.00 per person

Explore Berlin on a comprehensive walking tour. See all the major sights, from the Brandenburg Gate to Museum Island. Hear stories of residents from enthusiastic guides.

BERLIN UNDERGROUND

the streets of the metropolis with a visit to the Berliner Unterwelten-Museum. Learn more about the secret history of the city. Descend into bunkers as well as tunnel systems. https://www.berliner-unterwelten.de/ en/index.html

Cost from € 20.00 per person

GERMAN SPY MUSEUM BERLIN

The German Spy Museum Berlin offers a distinctive opportunity to delve into the shadowy world of espionage, situated in the very location where the Wall once separated the city.

https://www.deutsches-spionagemuseum.de/en

Take an exciting discovery tour beneath

VISIT THE DOME OF THE REICHSTAG BUILDING

The roof terrace and dome of the Reichstag Building can be visited, and offer spectacular views of the parliamentary and government district and Berlin's sights. Admission is free; advance registration required at https://www.bundestag.de/en/visittheBundestag/dome/ registration-245686

Social Events

EuMW Welcome Reception

Tuesday 19th September 2023 18:45 - 21:45

Cost: Free to conference delegates & invited exhibitors

Location: Palais, Messe Berlin

Sponsors: Keysight, Horizon House, EuMA (Please bring your badge to gain admission.) All registered conference delegates, as well as invited representatives from companies participating in the exhibition are invited to the Welcome Reception, sponsored by Keysight Technologies, Horizon House Publications and EuMA. Delegates will need to bring their badge, while exhibitors will need to bring their invitation, in order to gain entrance. The evening will commence with drinks at 18:45, followed by the General Chairs' handover from EuMW 2023 in Berlin to EuMW 2024 in Paris along with an address from the Platinum Sponsor, Keysight

Technologies.

The open-buffet dinner will be served from 19:15.

Automotive **Forum Networking** Dinner

Monday 18th September 2023 19:30 - 23:30

Cost: Free to registered Automotive Forum delegates (Please bring your badge to gain admission.)

Location off-site: SAGE Restaurant

(Shuttle service from hub27 will be provided including a guided city tour of Berlin. Meeting point at 18:30. The buses will depart no later than 18:45.) Join us for this unique event, which includes a

3-course dinner. This will provide you with the opportunity to network and discuss the issues raised throughout the Forum in an informal setting.

EuRAD Lunch & Closing Session

Friday 22nd September 2023 13:00 - 15:40

Cost: Free to registered EuRAD delegates Sponsor: Hensoldt (Please bring your badge to gain admission.)

Location: Alpha 5/6 An open-buffet lunch for EuRAD delegates to catch up and round off a busy week, followed by the EuRAD Closing Session.

Young Professionals **Get-Together**

Sunday 17th September 2023 20:00 - 24:00

Cost: Free for young professionals and school participants

Sponsors: Bosch, Dassault Systemes, Fraunhofer IAF, Hensoldt, IEEE MTT-S, Keysight, NI, Nokia, Rohde & Schwarz, Rosenberger, Saab, Siemens, Vega, Virginia Diodes (Tickets required. These will be distributed in schools and Sunday lunch break in registration area. Only a limited number of tickets are available.)

Location off-site: Hofbräu Wirtshaus Berlin

Come and enjoy networking in a very informal venue!

EuMIC Dinner

Monday 18th September 2023 19:30 - 22:30

Cost: Free to all EuMIC delegates Sponsor: Infineon

(EuMIC Dinner admission tickets required. These will be distributed to EuMIC delegates on site. Please note that only a limited number of tickets are available.)

Location off-site: Meistersaal am Potsdamer Platz

(Shuttle service will be provided from hub27. Meeting point at 18:30. The buses depart no later than 18:45. All registered EuMIC delegates are invited to our traditional and convivial "get-together". A good occasion to unwind at the end of the first conference day, and enjoy a dinner with speakers and colleagues.

EuMW Gala Dinner

Wednesday 20th September 19:30 - 23:30

Thanks to the generous sponsorship offered by Rohde & Schwarz, the cost is € 60 per person. Limited number of seats: "first come first serve"

Location off-site: Tipi am Kanzleramt Sponsor: Rohde & Schwarz

Experience the unique blend of culture, nature, and politics at TIPI AM KANZLERAMT in Berlin's iconic Tiergarten, offering a cozy tent venue, captivating performances, and proximity to renowned

landmarks. Registration on www.connexhotelsandevents.com/ eumw-gala-dinner.html

(**Tickets required.** These will be distributed during the Student Career Event at the entrance of hub27 on Wednesday, 12:00 - 15:00. Please note that only a limited number of tickets are available.)

Location off-site: Palais Kulturbrauerei Students, come party with representatives of leading RF companies. Expect a free buffet, open bar, DJ, and the chance to meet your future

Student Career Party

Wednesday 20th September 20:00 - 01:00

Cost: Free for microwave students

Sponsors: Bosch, Fraunhofer IAF, Hensoldt, Keysight, Nokia, Rohde & Schwarz, Rosenberger, Saab, Siemens, Vega

employer.

EuMW 2023 TPC Lunch

Wednesday 20th September 2023 13:00 - 14:20

Special event for the EuMW 2023 Technical Program Committee members (by invitation).

Location: Funkturm Berlin

A special event to recognize the service of the TPC members.

Workshops and Short Courses List

Registration Information

Despite the organisers' best efforts to ensure the availability of all listed workshops and short courses, the list below and the numbering are subject to change. Please refer to <u>www.eumweek.com</u> before registration for final availability and numbering.

	7 th September 2023		
SC1	EuMIC	Full Day	Fundamentals of Microwave PA Design
SC2	EuMC/EuMIC/ EuRAD	Half Day	Wideband Microwave Measurements of Multi-Port Devices on VNA-Type Measurement Systems
WS1	EuMC/EuMIC	Full Day	Broadband and Microwave Signal Processing Using Electronic-Photonic Integration
WS2	EuMIC	Full Day	Terahertz Device, Circuit and System Fundamentals and Applications
WS3	EuMC	Half Day	Highly-Integrated mm-Wave Circuits and Systems for Emerging Radar Applications
WS4	EuMC/EuRAD	Half Day	Joint Communications and Sensing
WS5	EuMIC/EuMC	Half Day	Heterogeneous Integration for Next Generation of Communication and Sensing
WS6	EuMIC/EuRAD	Half Day	mm-Wave Integrated Radar Circuit Design and SoC Integration in Silicon Technologies
WS7	EuMC/EuMIC	Half Day	Design, Linearization, and Optimization Techniques for Multiple-Input Power Amplifiers
WS8	EuMC	Half Day	Polarization Surfaces for Next-Generation Communications Systems
WS9	EuMC/EuRAD	Half Day	RF Packaging and IC Integration for Communication and Radar Applications above 100 GHz

Monday 18th September 2023

,			
WM1	EuMC	Full Day	Millimeter-Wave On-Wafer Measurement and Material Measurement for Future Communications and Automotive Radar Sensors
WM2	EuMC	Full Day	Measurement Methods for Passive Intermodulation and Environmental Testing of Electronic Circuits
WM3	EuMC	Half Day	mMIMO Active Antenna System Calibration for 5G/6G
WM4	EuMC	Half Day	Technology for RF/MW and Pulsed Power Bioelectromagnetics
WM5	EuMC	Half Day	SiGe BiCMOS Technologies as Enabler for D-Band Applications and Beyond
WM6	EuMC	Half Day	REAL Base Station and Related Device Techniques for 5G and Beyond 5G mm-Wave Systems
WM7	EuMC	Half Day	Multi-tone Power Amplifier Characterization as Enabler of Higher Efficiencies and Better Linearity Under Wideband Modulation
WM8	EuMC	Half Day	Additive Manufacturing
WM9	EuMIC	Full Day	Integrated Antenna Systems: Technologies and Innovations for High-Density Antennas and Phased Arrays

Friday 22 ^r	nd September 2023		
WF1	EuRAD	Full Day	Virtual Validation of ADAS with Automotive Sensors
WF2	EuRAD	Full Day	Unlocking the Potential of Radar by Compressed-Sensing, Machine-Learning, and High-Resolution Data Processing
WF3	EuRAD	Half Day	Characterization of sub-THz Channels for Communication and Sensing
WF4	EuRAD	Half Day	Radar Target Simulation
WF5	EuRAD	Half Day	Applications for Advanced Passive Radar Systems
WF6	EuRAD	Half Day	Industrial Radar

CONFERENCE REGISTRATION DETAILS

See pricing table on the following page.

ONLINE REGISTRATION

- All online registrations should be made at www.eumweek.com.
- Registrations completed up to and including 25th August 2023 will be charged at the 'Advance Discounted Rate' and those from 26th August 2023 will be charged at the 'Standard Rate'.
- Online registration is open from mid June 2023 up to and during the event until 22nd September 2023.

HOW TO REGISTER

If you have any questions regarding registration procedures and payment, please email:

- Conference Registration questions: registration.eumw2023@eumwa.org
- Exhibition Registration questions: <u>exhibitionreg@eumweek.com</u>

REGISTER ONLINE AT WWW.EUMWEEK.COM

- Delegates can register for one, two or all three of the conferences.
- Discounts will be given to those registering for two or more conferences.
- Payment can be made online using Amex, Visa, Mastercard or Bank Transfer.
- Registrants paying by Credit Card will be sent an automatic email confirmation, with a receipt and badge barcode.
- Registrants choosing to pay by Bank Transfer will receive their confirmation, but their receipt and badge barcode will be sent only once payment has been received and cleared by Horizon House.
- Bring your receipt, barcode and photo ID with you to the event.
- Go to the Fast Track Check In Desk and print out your badge.

ONSITE REGISTRATION

- Onsite registration is available:
- Saturday, 16th September 2023, 16:00 19:00
- Sunday, 17th September 2023, 08:00 17:00
- Monday, 18th September 2023, 08:00 17:00
- Tuesday, 19th September 2023, 08:00 17:00
- Wednesday, 20th September, 2023, 08:00 17:00
- Thursday, 21st September 2023, 08:00 17:00
- Friday, 22nd September 2023, 08:00 10:00

Onsite registration will be charged at the Standard Rates.

ONSITE REGISTRATION

- The registration area will be outside the Exhibition Halls as signposted.
- There will be Self Service terminals in the registration area where delegates can enter their details and pay immediately by swiping their credit cards through the readers attached to the terminals.
- Delegates can also choose to 'Pay at Cashier' and then proceed to the Cashier Point and pay using credit cards or cash. Receipts will be given accordingly.

Registration Fees

Get the most out of this year's Microwave Week with a Full Week ticket. Combine all three conferences with additional access to the Defence, Security and Space and the 5G to 6G Forum (the Automotive Forum and the Schools are not included) as well as all the Workshops and Short Courses.

Registration at one conference does not allow access to the sessions of the other conferences.

Subsidised lunchboxes are € 8 each (one per day). They are available to all who attend EuMW, and should be ordered at the time of registration, either online or on-site.

[©]Reduced rates are offered if you have society membership to any of the following: EuMA, GAAS®, IET or IEEE. Reduced rates for the conferences are also offered if you are a Student/Senior (Full-time students 30 years or younger and Seniors 65 or older as of 17th September 2023). The fees shown below are invoiced in the name and on behalf of the European Microwave Association. All payments must be in € Euros – cards will be debited in € Euros.

BECOME A MEMBER - NOW! EuMA membership fees: Professional € 25 / year, Student € 15 / year.

One can apply for EuMA membership by ticking the appropriate box during registration for EuMW. Membership is valid for one year, starting when the subscription is completed. The discount for the EuMW fees applies immediately.

is no longer available.

CONFERENCES REGISTRATION	ADVANCE DISCOUNTED RATE (FROM NOW UP TO & INCLUDING 25 th August 2023)				STANDARD RATE (FROM 26 th August 2023 & ONSITE)				
	Society	Society Member 😳		Non-Member		Society Member 😳		Non-Member	
1 Conference	Standard	Student/Sr.	Standard	Student/Sr.	Standard	Student/Sr.	Standard	Student/Sr.	
EuMC	€ 560	€ 160	€ 790	€ 220	€790	€ 220	€ 1,110	€ 310	
EuMIC	€ 430	€ 140	€ 600	€ 200	€ 600	€ 200	€ 850	€ 280	
EuRAD	€ 380	€ 130	€ 540	€ 180	€ 540	€ 180	€750	€ 260	
2 Conferences	Standard	Student/Sr.	Standard	Student/Sr.	Standard	Student/Sr.	Standard	Student/Sr.	
EuMC + EuMIC	€ 800	€ 300	€ 1,120	€ 420	€ 1,120	€ 420	€ 1,560	€ 590	
EuMC + EuRAD	€ 760	€ 290	€ 1,060	€ 400	€ 1,060	€ 400	€ 1,490	€ 570	
EuMIC + EuRAD	€ 650	€ 280	€ 910	€ 390	€ 910	€ 390	€ 1,280	€ 540	
3 Conferences	Standard	Student/Sr.	Standard	Student/Sr.	Standard	Student/Sr.	Standard	Student/Sr.	
EuMC + EuMIC + EuRAD	€970	€ 430	€ 1,350	€ 600	€ 1,350	€ 600	€ 1,900	€ 850	
Full Week Ticket	€ 1,480	€ 880	€ 1,960	€ 1,110	€ 1,880	€ 1,070	€ 2,530	€ 1,380	

			ADVANCED DISCOUNTED RATE (UP TO & INCLUDING 25 th August 2023)		STANDARD RATE (FROM 26 th August 2023 & ONSITE)	
	Date	Delegates*	All Others**	Delegates*	All Others**	
Automotive Forum	18 th September 2023	€ 300	€ 420	€ 380	€ 490	
5G to 6G Forum	21 st September 2023	€70	€ 100	€90	€ 110	
Defense, Security & Space Forum	20 th September 2023	€ 40	€ 70	€ 40	€ 70	
13 th Tom Brazil Doctoral School of Microwaves: From Microwaves to Machine Learning	17 th September 2023	€ 40	€ 40	€ 40	€ 40	
7 th European Microwave Student School: Microwave Measurement Techniques	17 th /18 th September 2023	€ 40	€ 40	€ 40	€ 40	
Gala Dinner***	20 th September 2023	€60	€ 60	€60	€ 60	
* Those registered for EuMC, EuMIC or EuRAD **	*** Those not registered for a conference **** Bookable at http://www.connexhotelsandevents.com/eumw-gala-dinner.htm					

WORKSHOPS AND SHORT COURSES	C	IN COMBIN/ ONFERENCE I		N		WITHOUT ERENCE REGISTRATION		
	Society	Member [©]	Non-Member		Society Member [©]		Non-Member	
	Standard	Student/Sr.	Standard	Student/Sr.	Standard	Student/Sr.	Standard	Student/Sr.
Half Day	€ 110	€ 90	€ 150	€ 110	€ 150	€ 110	€ 200	€ 150
Full Day	€ 160	€ 120	€ 220	€ 160	€ 220	€ 160	€ 290	€ 220

CONFERENCE TECHNICAL CO-SPONSORS

A S

EUROPEAN MICROWAVE WEEK SPONSORS

Official Publication: Supported by:

Members have full e-access to the International Journal of Microwave and Wireless Technologies. The printed version of the journal

EUMA KNOWLEDGE CENTRE The EuMA website has its Knowledge Centre which presently contains over 22,000 papers published under the EuMA umbrella. Full texts are available to EuMA members only, who can make as many copies as they wish, at no extra-cost.

Co-Sponsored by:

Co-Sponsored by:

13th Tom Brazil Doctoral School of Microwaves

From Microwaves to Machine Learning: Building and Training Artificial Neural Networks for **Radar-Based Gesture Recognition**

Sunday 17th September 2023 Room: Beta 8

Chair: Fabian Lurz, Hamburg University of Technology, Germany

The Tom Brazil Doctoral School is an exclusive opportunity for PhD students to gain hands-on experience in building and training artificial neural networks. Both theoretical fundamentals are taught, and practical understanding is fostered in a hands-on training where participants build and train artificial neural networks themselves. In the morning, fundamentals of FMCW radar, radar signal processing and gesture recognition will be reviewed. This is followed by an introduction to machine learning. covering the fundamentals of deep learning and network architectures.

In the afternoon, participants put the concepts into practice by using interactive Jupyter notebooks to build and train their own neural networks for radar-based hand gesture recognition. This program provides participants with valuable experience in applying machine learning techniques to solve real-world problems. An own laptop is required to participate in the hands-on sessions. Further information about necessary software packages will be sent by mail. Basic knowledge of FMCW radar signal processing and programming in Python is beneficial, but not mandatory.

The registration fee for this event is € 40. For registration and further information, please visit www.eumweek.com Registration closes 6th September 2023. The place is limited, so save your ticket well in advance!

7th European Microwave Student School Microwave Measurement Techniques

Sunday 17th and Monday 18th September 2023 Room: Beta 9

Chair: Holger Maune, Otto von Guericke University Magdeburg, Germany

The European Microwave Week 2023 features the European Microwave Student School for bachelor and master students from all over Europe. The topic is "Microwave Measurement Techniques" which includes topics in the fields of introduction to metrology, spectrum and signal analysis, network analysis, calibration, and on-wafer measurement techniques. The programme features highly accepted experts from academia and industry. The course will be formed by two intensive days of lectures accompanied by modern measurement equipment. Beside the lecture

Programme

Sunday, September 17th

16:00

09:00 09:10	Welcome Fabian Lurz, Chairman 13 th Tom Brazil Doctoral School of Microwaves
09:10 10:40	Fundamentals of FMCW Radar, Radar Signal Processing and Gesture Recognition
10:40 11:20	Coffee Break
11:20 13:00	Introduction to Machine Learning for Microwave Engineers
13:00 14:20	Lunch Break
14:20	Hands-On I: Building and Training Artificial Neural Networks for

Radar-based Gesture Recognition

Coffee Break 16:00 16:40

16:40 Hands-On II: Building and Training Artificial Neural Networks for 18:10 **Radar-based Gesture Recognition**

18:10 **Closing Remarks**

18:20

Fabian Lurz. Chairman 13th Tom Brazil Doctoral School of Microwaves

20:00 Young Professionals Get-Together Hofbräu Berlin am Alex 23:00

Wednesday, September 20th

12:00 Student Career Event @ hub27 15:00

20:00 Student Career Evening Event @ Club Downtown 01:00 Berlin (Get tickets in the afternoon

event.)

Programme

STUDENT ACTIVITIES

Sunday, September 17 th		16:40 18:20	Spectrum & Signal Analysis Markus Funk, Rohde & Schwarz	14:20 16:00	Calibration Techniques for Net- work Analysis Bianca Will, Fachhochschule	
09:00 09:10	Introduction Holger Maune, Chairman 7 th European Microwave Student	20:00	Young Professionals Get-Together Hofbräu Berlin am Alex	16:00	Südwestfalen	
	School 2023	23:00		16:40		
09:10 10:40	Introduction to Metrology Gerd Wübbeler, Physikalisch- Technische Bundesanstalt (PTB)	Monday	, September 18 th	16:40 18:20	On-Wafer Network Analysis Gia Ngoc Phung, Physikalisch- Technische Bundesanstalt (PTB)	
10:40 11:20	Coffee Break	09:00 10:40	Modern Methods for Vector Network Analysis Joel Dunsmore, Keysight Technologies	18:20 18:40	Closing Remarks Holger Maune, Chairman 7 th European Microwave Student	
11:20 13:00	RF-Power Measurements Frauke Gellersen & Karsten Kuh- Imann, Physikalisch-Technische Bundesanstalt (PTB)	10:40 11:20	Coffee Break	Wednes	School 2023 day, September 20 th	
13:00 14:20	Lunch Break	11:20 13:00	Modern Methods for Vector Network Analysis Joel Dunsmore, Keysight Technologies	12:00 15:00	Student Career Event @ hub27	
14:20 16:00	Spectrum & Signal Analysis Markus Funk, Rohde & Schwarz	13:00 14:20	Lunch Break	20:00 01:00	Student Career Evening Event @ Club Downtown Berlin	
16:00 16:40	Coffee Break				(Get tickets in the afternoon event.)	

The registration fee for this event is € 40. With the registration, bachelor and master students with a valid student ID of an accredited university will receive a complimentary guest ticket to all EuMW technical sessions as well as to the exhibition. For registration and further information, please visit www.eumweek.com.

programme, there will be a career event on Wednesday evening to get in contact with other students, research fellows from universities and companies. The programme is designed to lay the foundations, both mathematically and conceptually, for microwave measurements. It will enable a fundamental understanding of high-frequency measurement techniques and will prepare students to become intelligent users of commercial microwave measurement devices. The school is also open to PhD students who are interested in microwave measurements.

Student Career Event

Wednesday 20th September 2023 Location: Entrance of the conference centre & Palais Kulturbrauerei

Organiser: Yannick Wenger, Keysight Technologies, Germany Co-Organiser: Georg Gramlich, Karlsruhe Institute of Technology, Germany

The Student Career Event is a great new social

event making its debut at the 2023 edition of

EuMW! Registered student delegates can meet

prospective employers. And party together in

On September 20th students and major com-

panies in the high-frequency business can

connect between 12:00 and 15:00 at a dedi-

cated space at the entrance of the conference

center. Students, take the chance to meet

one of Berlin's famous nightclubs!

your potential future employer, and get a free ticket for the party in the evening!

Join us for the Career Party starting at 20:00 in the Palais Kulturbrauerei (Schönhauser Allee 36, 10435 Berlin). Enjoy the buffet, grab a beer, and get to know companies from a completely new angle. Party program: Short company presentations, company speed-dating, and more. As the night progresses, what starts as an informal career event will shift

into a Berlin party. A ticket from the afternoon event is required.

Free for microwave

students!

Get your tickets here: Wednesday

12:00 - 15:00

Near the entrance of the conference centre

STUDENT ACTIVITIES

Get the latest updates and the participating companies at https://www.eumweek.com/students/StudentCareerEvent.html

13th THz Young Scientists Meeting

Thursday 14th and Friday 15th September 2023 Location: Free University of Berlin Visit Tour: Ferdinand-Braun-Institut, Adlershof, 16th September 2023

The annual THz Young Scientists Meeting aims to provide a friendly and welcoming international platform for young scientists to exchange ideas and learn about the advances in fundamental and applied THz research. The meeting is specifically targeted at master's and PhD students interested in THz-

related research. This year, the THz Young Scientists Meeting is organized by the Free University of Berlin and the Fritz Haber Institute of the Max Planck Society. It will take place from 14th to 15th September 2023 at the facilities of the Free University of Berlin. For interested participants a tour through the Ferdinand-Braun-Institut with information on THz and semiconductor activities at the Institut at the Adlershof campus outside the city. A joint evening in beer garden will also be arranged. Please indicate your participation at the registration. The abstract submission deadline for the

SIEMENS Student **Career Party** Rosenberger Wednesday 20th September 20:00 - 01:00 **Cost: Free for microwave students** HENSOLDT) (**Tickets required.** These will be distributed during the Student Career Event at the entrance of hub27 on Wednesday, 12:00 – 15:00. Please note that only a limited number of tickets are available.) NOVIA Location off-site: Palais Kulturbrauerei Students, come party with representatives of

A KEYSIGHT

leading RF companies. Expect a free buffet, open bar, DJ, and the chance to meet your future employer.

🗾 Fraunhofer

meeting is 31st July 2023. Please note that there is no conference fee associated with attending the meeting. For further information, including registration

and updates, please visit the official website: https://indico.fhi-berlin.mpg.de/event/123/

Joint Women in Microwaves (WiM) and Young Professionals (YP) Event

Tuesday 19th September 2023 13:00 - 19:00 Room: Beta 6

Chairs:

Ana Ines Inacio (YP), TNO, The Netherlands Cristina Andrei (WiM), Brandenburg University of Technology, Germany Jasmin Grosinger (WiM), Graz University of Technology, Austria

The joint WiM/YP event will take place on Tuesday afternoon, September 19th, 2023, starting at 13:00, with lunch boxes. The main event is a 90-minute moderated panel session with female industry representatives. They will share insights into their careers, companies, and industries and provide tips for young professionals pursuing a career in the industry.

Programme

13:00 Get Together

13:30 The joint WiM/YP event will take place on Tuesday afternoon, September 19th, 2023, starting at 13:00 with lunch boxes.

13:30 Panel Session

15:00 The main event is a 90-minute moderated panel session with female industry representatives. They will share insights into their careers, companies, and industries and provide tips for young professionals pursuing a career in the industry.

Panelists:

- Wendy Shu, CEO, Eravant (formerly known as SAGE Millimeter)
- Sherry Hess, Sr. Group Director, Product Management, Cadence
- Anouk Hubrechsen, Co-founder and CEO, ANTENNEX
- Anna Miskiewicz, Engineering Manager, Wireless System Engineering and Architecture, Apple
- Mayazzurra Ruggiano, Radar Architect, Technical Directorate, Thales Nederland B.V.
- Irene Selvanathan, Founder and CEO, Neurospace

Following the panel, we will have a unique sightseeing tour

of Berlin. Guided tours by Berliner Unterwelten will entertain

us: From Flak Towers to Mountains of Debris & Bunkers, Sub-

The tour is restricted to 50 people. If you want to attend,

please sign up here: https://www.termino.gv.at/meet/en/b/

We will return to the conference centre before 18:45 to

attend the Welcome Reception. A bus will take care of

If you have any questions, please get in touch with jasmin.

c791172b8f8382a896a357f81ce77fe4-214164.

grosinger@tugraz.at and andrei@b-tu.de.

Sightseeing Tour

transportation.

ways, and the Cold War.

16:00

18:45

Young Professionals in Microwaves

Following previous years' initiative, EuMW 2023 has arranged a Young Professionals track devoted to students, young researchers and young industry professionals. The track comprises of a couple of technical and self-development sessions. The sessions are organised and co-sponsored by IEEE Region 8 Young Professionals, IEEE MTT-Society Young Professionals and IEEE Women in Microwaves.

We are looking forward to seeing you at one or more of our events.

For additional questions, please contact Ana Inês Inácio via yp@ieeer8.org.

Joint WiM-YP Lunch Session

Tuesday 19th September 2023 13:00 - 15:00

Come and enjoy a moderated panel session with a selected panel of industry representatives. Free lunch boxes will be handed out before the session starts, at room Beta 6.

Student Career Event & Party

Wednesday 20th September 2023

Come and look around what microwave industry has to offer. The Student Career Event is a great new social event making its debut at the 2023 edition of EuMW! Registered microwave students can meet prospective employers and party together in one of Berlin's famous nightclubs!

Cost: Free for microwave students

(**Tickets required.** These will be distributed during the Student Career Event at the entrance of hub27 on Wednesday, 12:00 – 15:00. Please note that only a limited number of tickets are available.)

Sunday 17th September 2023 20:00 - 24:00

We welcome you to an evening dinner together with your fellow student colleagues, young professionals and industry participants.

Cost: Free for young professionals and school participants

(**Tickets required.** These will be distributed in schools and Sunday lunch break.)

Joint WiM-YP Sightseeing Tour

Tuesday 19th September 2023 16:00 - 18:45

Following the panel, we will have a unique sightseeing tour of Berlin. Guided tours by Berliner Unterwelten will entertain us: From Flak Towers to Mountains of Debris & Bunkers, Subways, and the Cold War.

SPECIAL CONFERENCE EVENTS

The Automotive Forum Innovations and Trends for Automotive **Radar Frontends and Imaging Radars**

Monday 18th September 2023 09:00 - 18:20 Room: Alpha 5

Chair: Benjamin Nuss, Karlsruhe Institute of Technology, Germany

Co-Chairs: Martin Kunert, Bosch, Germany & Frank Gruson, ZF, Germany & Kostas Doris, NXP, The Netherlands

Following applications like keyless entry and tire pressure monitoring systems, mobile communications and recently automotive radar made microwave technologies a strong pillar inside the automotive world.

In 2019, the first Automotive Forum was organized by EuMA to provide an open platform for industrial experts to discuss technical aspects, concepts and radar architectures as

well as market issues in the area of microwaves in the automotive industry. The forum consists of a good mix of technical presentations and discussions as well as networking time. This year's event will focus on: 1. Innovations and new trends in antenna and chip design

- 2. Perception requirements and enhance-
- ments of imaging radars
- 3. Resolution challenges and novel concepts of imaging radars
- 4. Radar testing & verification and future market & concept outlook
- The forum is mainly devoted to technical experts from automotive industry throughout the whole supply chain. Keynote speakers will present their views on special technical solutions as well as regulatory or strategic issues.

Programme

Session 1: Innovations and New Trends in Antenna and Chip Design

Chair: Benjamin Nuss, Karlsruhe Institute of Technology, Germany

- 09:00 Integrated Waveguide-in-Radome Antenna Concept for Automotive Radar Applications 09:25 Alejandro Garcia-Tejero, Fernando Rodriguez Varela, Jan Feike, Francesco Merli, Huber+Suhner, Switzerland
- 09:25 Multi-Layer Waveguide Technology - A New Solution for Automotive Radar Antennas 09:50 Abbas Voosogh, Stefan Carlsson, Carlo Bencivenni, Gap-
- 09:50 Innovative Architecture for High Performance Low **Cost Radar Frontends** 10:15
- Simona Bruni, Aline Friedrich, Marta Arias Campo, Markus Krengel, Oliver Litschke, Matthias Geissler, IMST, Germany
- 10:15 **Enabling Silicon Technologies for Automotive Radar Trends and Requirements** 10:40 Chi Zhang, Farzad Inanlou, GlobalFoundries, USA
- 10:40 **Coffee Break**

waves, Sweden

11:20

Session 2: Imaging Radar - Perception Requirements and
Enhancements
Chair: Kostas Doris, NXP, The Netherlands

- 11:20 Imaging Radar Focused on L4/L5 Applications Frank Gruson, ZF, Germany 11:45
- 11:45 Automotive Radar for Autonomous Driving: Signal Processing Meets Deep Learning 12:10 Shunqiao Sun, University of Alabama, USA
- 12:10 A Novel Perception Framework Based on the New **Generation of Automotive Imaging Radar** 12:35 Gang Li, Xuyang Li, Sinpro, China

12:35 System-level Design for Enhanced Radar Performance 13:00

Marta Martínez-Vázquez, Stephan Renner, Renesas Electronics Europe, Germany | Ashish Lachhwani, Alok Prakash Joshi, Steradian Semiconductors, India | Takuya Takizawa, Reiji Yoshida, Renesas Electronics Corporation, Japan

13:00 Poster Lunch

(Free lunch boxes) 14:20

Session 3: Imaging Radar - Resolution Challenges and Novel Concepts Chair: Frank Gruson, ZF, Germany

14:20 14:45	Radar Detection-based Point Cloud Imaging Jonathan Wache, Mohamed Nour Mejdoub, Andreas Loeffler, Christoph Brand, Continental, Germany
14:45 15:10	Uncovering Hidden Information in Radar Point Cloud Data Through Super-Resolution Techniques Noam Arkind, Arbe, Israel
15:10 15:35	Sparse Array Approach to Imaging Radar and Com- parison with a Quasi Massive MIMO Technique Ryan Wu, NXP, USA
15:35 16:00	Coherent Radar Networks for Automotive Applications Marcel Hoffmann, FAU Erlangen-Nürnberg, Germany
16:00 16:40	Coffee Break

Advanced registration fee (up to & incl. 25th August 2023) is € 300 for those who registered for a conference and € 420 for those not registered for a conference. Standard registration fee (from 26th August 2023 & onsite) is € 380 for those who registered for a conference and € 490 for those not registered for a conference. The EuMW website will give further details and updates.

Posters

Monday 18th September 2023 13:00 - 14:20 Location: Alpha 5 During the lunch break posters of different companies and startups will be shown in the room of the Automotive Forum. This will offer an additional platform to network and discuss upcoming topics. Free lunch boxes are included.

Automotive **Forum Networking** Dinner

Monday 18th September 2023 · 19:30 - 23:30 **Cost: Free to Automotive Forum delegates** (Please bring your badge to gain admission.) Location off-site: SAGE Restaurant (Shuttle service from hub27 will be provided including a guided city tour of Berlin. Meeting point at 18:30. The buses leave no later than 18:45.) loin us for this unique event, which includes a 3-course dinner. This will provide you with the opportunity to network and discuss the issues raised in the Forum in an informal setting.

Session 4: Radar Testing & Verification and Future Market & Concept Outlook

Chair: Martin Kunert, Bosch, Germany

16:40 17:05	Automotive Radar V&V-Testing by Over-the-Air Scene Generation Erick Gonzalez Rodriguez, Marian Keck, Tobby Brandt, Heiko Mayer, Bence Erdei, Robert Erhart, Markus Oenning, Martin Holder, Jürgen Hildebrandt, Armin Himmelstoß, Bosch, Germany
17:05	SIL, HIL, OTA – Confidence in Test Results
17:30	Andreas Himmler, dSpace, Germany
17 <u>:</u> 30	Advances in Automotive Radar Beyond 76–81 GHz
17:55	Holger Gryska, Rohde & Schwarz, Germany
17 <u>:</u> 55	Automotive Radar Technology and Market Overview
18:20	Cédric Malaquin, Yole Développement, France

Defence, Security and Space Forum Boosting Connectivity for Moving Platforms

Wednesday 20th September 2023 11:20 - 17:40 Room: Alpha 6

Organizer: Volker Ziegler, Airbus Defence and Space, Germany Co-Organizer: Siegbert Martin, Tesat-Spacecom, Germany

Pervasive connectivity is one of the megatrends for our society, influences everyone's daily life and is the backbone of countless business operations. Many people are enjoying seamless and high-data rate connectivity at their homes and operators of mobile platforms (cars, ships, airplanes) as well as the network operators (ground-based or spacebased) are investing a lot to deliver equivalent services for the people on the move or in

remote areas. At the same time, information superiority is one, if not the, decisive factor in modern warfare. Being able to get an instant situational awareness, remotely connect to distant platforms or organize mannedunmanned collaborative missions is vital to successful operations.

Programme

11:20 12:10	Antenna Technology Challenges for Multi-Orbital Satellite Systems Miquel Albiol, SES Satellites
12:10 13:00	Next-Gen Communication for Advanced Airborne Defense Operations Thomas Schanne, Airbus Defence and Space
13:00 14:00	Lunch and Learn Microwave Journal Industry Sessions (Free lunch boxes)
	Testing for Coexistence in Crowded and Contested RF Environments Tim Fountain, Rohde & Schwarz

- 14:00 High Performance ESAs for Ku and Ka-band SATCOM and Point-to-Point Communications 14:35 Gabriel M. Rebeiz. Extreme Waves
- 14:40 The Role of ESA in Supporting Connectivity from Space Xavier Lobao, ESA 15:15
- 15:20 Direct-to-Device Connectivity via Zephyr HAPS
- Andre Grabs, Airbus Defence and Space 16:00

Coffee Break 16:00

16:40

16:40 DSS Round Table 17:40

- 1. Moderators: Volker Ziegler, Siegbert Martin 2. Miguel Albiol, SES Satellites, Senior Manager RF Systems
- Engineering
- 3. Thomas Schanne, Airbus Defence and Space, Chief Engineer FCAS
- 4. Gabriel M. Rebeiz, Extreme Waves, CEO
- 5. Xavier Lobao, ESA, Head of Future Projects Division within the Telecom Technologies, Product & Systems Department
- 6. Andre Grabs, Airbus Defence and Space, HAPS Solutions Architect

2011 2015 2017 2012 2013 2014 2016 2018 2019 Manchester Amsterdam Nuremberg Rome Paris London Nuremberg Madrid Paris RF Payloads for New Radio ArchimmWave Imaging Defence and Security Military Radar vs. Protection and Secu-Challenges and Op-The Internet of Space: Integrating Unmanned rity of our Infrastrucportunities for Indoor/ Systems in Defence tectures: The Evolu-Systems including Space Automotive Radar Unmanned Aerial Technologies and Vehicles Enclosed and Urban ture and Home land Applications and Security tion for Satellite Constellations Communications and Scenario's Sensing Technologies

This year's forum brings together leading industry, institutional and academic experts to showcase and discuss the latest trends to provide pervasive and persistent connectivity to moving platforms even under congested and contested spectrum access. It will encompass network operator requirements as well as leading edge technologies for spaceborne, airborne and ground vehicles. These topics will be addressed from the commercial point of view of satellite network operators and antenna technology providers for mobile platforms in addition to the perspective of defense-related airborne networks. The forum will also highlight and discuss institutional roadmaps of new technologies needed to address future societal and industrial challenges. Enjoy a variety of invited talks, the lunch and learn session and exciting panel discussions.

Registration and Programme Updates

Registration fee is € 40 for those who registered for a conference and € 70 for those not registered for a conference. The EuMW website will give further details and updates.

2021 London

2022 Milano

Space Situtational Awareness

RF Sensing from Space: Modern Trends and Challenges

Modern Defense Systems: Key Technologies and Future Challenges

SPECIAL CONFERENCE EVENTS

SPECIAL CONFERENCE EVENTS

5G to 6G Forum

that will permit the evolution of services from

5G to 6G with a clear focus on the radio fre-

quency technologies that will enable the use

of, e.g., the FR3, millimetre-wave, and sub-

THz bands. The forum consists of a full-day

session with invited speakers from industry,

Thursday 21st September 2023 08:45 – 18:20 Room: Alpha 5

Chair: Norman Franchi, FAU Erlangen-Nuremberg, Germany Co-Chair: Robert Weigel, Erlangen-Nuremberg, Germany & Andreas Müller, Robert Bosch, Germany

The 5G to 6G Forum is a one-day international industry forum that deep dives into the main important research and development trends operators, vendors, academia, and the 6G Plat-form Germany.

The forum will specifically focus on electronics-relevant technologies (e.g., analogue and digital chip design, RF technology, semiconductor technology, antennas, embedded systems, packaging, test systems, etc.) and will thus address the question "What do 5G/6G and the transition from 5G to 6G mean at the hardware/electronics level?". The focus covers also aspects and technologies related to the integration of communications and sensing as well as aspects to improve coverage and performance of millimetre-wave and sub-THz networks. The presence of leading operators and 5G leading vendors together with academia will permit setting the scene in terms of requirements, long-term vision, and most important research trends.

Programme

08 <u>:</u> 45 09:00	Welcome by the Chairmen Norman Franchi, Robert Weigel, FAU Erlangen-Nuremberg Andreas Müller, Robert Bosch
09:00 09:30	Secure 6G Campus Networks with Integrated Sensing Ivan Tsvelykh, Lead Principal Engineer, Infineon Technologies
09:30 09:45	MOCZ: A Novel Waveform for ISAC Philipp Walk, CEO, MOXZ
09:45 10:15	Metaverse Ready Networks and Path to 6G Volker Ziegler, Senior Technology Advisor, Nokia
10:15 10:40	Towards 6G: Greener MIMO Through Improved Efficiency Wim Rouwet, Senior Principal Engineer, Systems and Archi- tecture, Secure Connected Edge, NXP Semiconductors
10:40 11:20	Coffee Break
11:20 11:45	Open6GHub Germany – An Open Hardware Testbed for 6G Addressing Sub-6 GHz to THz Spectrum Thomas Zwick, Karlsruhe Institute of Technology Norman Franchi, FAU Erlangen-Nuremberg

11:45 12:15	Millimeter-Wave and sub-THz Technology and Research Trends for 5G and 6G Applications Renato Lombardi, President of Huawei Italy Research Center, VP of Microwave Product Line, Huawei Technologies
12:15	RF-Frontends: Array and MMIC Design for 5G and 6G
12:30	Ulrich Lewark, Team Leader, IMST
12:30	6G – Connecting a Cyber-Physical World
13:00	Jonas Hansryd, Head of HW Transport Systems, Ericsson
13:00	Interactive Lunch
14:20	(Free lunch boxes)
14:20 14:40	6G-RIC – Energy-Efficiency 6G Transceiver Architectures, Building Blocks, and Hybrid Integration Concepts at D-Band and 300 GHz Friedel Gerfers, Technical University of Berlin
14:40	Microwave Photonics for 6G Wireless
14:55	Andreas Stöhr, Founder and CEO, Microwave Photonics

14:55The Start-Up Way from University to Industry for Future
Wireless Communications and RADAR Systems
Benedict Scheiner, Co-Founder & Managing Director, Sykno

15:10 15:45	Towards 6G: The T&M Perspective from THz Communica- tions to RIS Taro Eichler, Technology Manager, Rohde & Schwarz
15:45 16:00	Enhancing Silicon Photonics Through Engineered Organic Materials Adrian Mertens, CEO, SilOriX
16:00 16:40	Coffee Break
16:40 17:10	Enabler of New Features for Cooperative Perception Soheil Gherekhloo, Robert Bosch GmbH
17:10 17:25	Next Generation Data Converters for 5/6G Communications & Radar Platforms Marcel Runge, Co-Founder & Managing Director, IC4X
17:25 18:00	Private 5G Networks in the Industry - Implications for the Future Daniel Mai, Director of Industrial Wireless Communication, Siemens AG
18:00 18:20	Conclusions and Closing Norman Franchi, Chairman, FAU Erlangen-Nuremberg

Registration and Programme Updates

Advanced Registration fee (up to & incl. 25th August 2023) is € 70 for those who registered for a conference and € 100 for those not registered for a conference. Standard Registration fee (from 26th August 2023 & onsite) is € 90 for those who registered for a conference and € 110 for those not registered for a conference. The Conference Special Events section of the EuMW website will give further details and updates.

Industrial Sponsors

ste huawei 🕪

ROHDE & SCHWARZ Make ideas real

Startup Sponsors

PROGRAMME

MONDAY 09:00 - 10:40

¹Brandenburg University of Technology, ²Ferdinand-Braun-Institut (FBH)

Quentin Berlingard¹, Jose Lugo-Alvarez¹, Maryline Bawedin², Tadeu Mota-Frutuoso¹, Cédric Durand³, Daniel Gloria³, Philippe Galv³, Mikaël Cassé¹ ¹CEA - LETI, ²Univ. Grenoble Alpes, Grenoble INP, CNRS, IMEP LaHC, ³STMicroelectronics, France

ROOM	Alpha 6	Beta 5	Beta 6	Beta 7	ROOM	Gamma 8	Alpha	6
	EuMICO1 GaN LNA Chair: Hermann Schumacher ¹ Co-Chair: Philipp Neininger ²	EuMICO2 Novel Modelling Techniques for GaN and Cryogenic Devices	EuMICO3 III-V mm-Wave Devices and Characterisation	EuMICO4 Techniques for Measurement and Detection Chair: Tommaso Cappello'		15th ARFTG On-Wafer User's Forum Chairs: Andrej Rumiantsev', Gia Ngoc Phung ²	EuMIC EuMIC Chair: Fried	Opening
	¹ UIm University, ² Fraunhofer Institute for Solid State Physics IAF	Chair: Jean-Christophe Nallatamby ¹ Co-Chair: Joaquín Portilla ² ¹ XLIM UMR 7252, University of Limo- ges/CNRS, ² University of the Basque Country (UPV/EHU)	¹ TAIL Frank E. Vall Vitet Co-Chair: Rüdiger Quay ² ¹ TNO Defense, Safety and Security, ² Fraunhofer Institute for Applied Solid State Physics (IAF)	Co-Chair: Shmuel Auster ² 'Villanova University/University of Bristol, ² IEEE Israel Section, Chair		¹ MPI Corporation, Taiwan, ² Physikalisch- Technische Bundesanstalt, Germany		University of Berlin, ² IHP,
09:00	EuMICO1-1	EuMICO2-1	EuMICO3-1	EuMICO4-1	09:00	For those new to us, we are	11:20	Welcome Address
09:20	A 23 - 32 GHz LNA with Near 5 W Power Handling Capability Using 180 nm GaN HEMT Technology	Modeling of 50-nm Metamorphic HEMTs for Cryogenic Ultra-Low- Power Operation	Low Barrier Schottky Technology for MM&Sub-MM Wave Receiver Systems	Driving Integration in the RF and mmWave Semiconductor Testing Industry	10:40	an informal discussion group initiated by the Automatic	11:30	Friedel Gerfers, EuMIC Chair
	Nicholas Miller ¹ , Matthew Hodek ² , Christopher Barisich ³ , Edward Gebara ³ , John Albrecht ² , John	Felix Heinz', Arnulf Leuther', Fabian Thome' 'Fraunhofer IAF, Fraunhofer Institute for Applied	Matthias Hoefle' INDUSTRIAL KEYNOTE	Daniel Kather' INDUSTRIAL KEYNOTE		Radio Frequency Techniques Group (ARFTG) and devoted to	11:30	RF, Power and Sei
	Papapolymerou ² ¹ Air Force Research Laboratory, ² Michigan State Uni- versity, ³ Electromagnetic Sensor Technologies, Inc.	Solid State Physics	'ACST GmbH	'Advantest Europe GmbH		sharing information and issues related to on-wafer measure- ment and calibration practices.	12:15	Ludger Verweyen Infineon Technologies, Gerr
						The Forum is also a platform to define workgroups and gather		The trend to mo centers and hig
09:20	EuMIC01-2	EuMIC02-2	EuMIC03-2	EuMIC04-2		experts in the field to progress		average 10 time
09:40	A D-Band Low-Noise Ampli- fier MMIC in a 70-nm GaN HEMT	Dynamic RD Modeling by Exploit- ing Gate Current Dependency of	A Novel Fmax Enhancement Method for GaN HEMTs by Utilis-	A 12.2 - 14.9 GHz Amplitude- Sensitive VCO-based EPR-on-a-		the field of on-wafer measure-		introduction of r
	Technology	Virtual Gate Effect	ing a Distributed Behaviour of a	Chip Detector Achieving a Spin		ments and calibrations.		by taking advar antenna system
	Fabian Thome ¹ , Peter Brückner ¹ , Rüdiger Quay ¹ ¹ Fraunhofer Institute for Applied Solid State	Petros Beleniotis ¹ , Christos Zervos ¹ , Frank Schnieder ² , Matthias Rudolph ¹	Gate Finger	Sensitivity of 6 × 109 spins/VHz		Forum principles:		consumption. W
	Physics IAF	¹ Brandenburg University of Technology (BTU) Cottbus-Senftenberg, ² Ferdinand-Braun-Institut	Keiichi Sakuno', Eiji Suematsu', Shinji Hara' ⁻ Nagoya University	Muhammad Khubaib UI Hassan Khan', Mohamed Atef Hassan', Michal Kern', Jens Anders'		 Facilitate discussion with 		RF components
		(FBH) gGmbH, Leibniz-Institut für Höchstfrequen- ztechnik		'Universtiy of Stuttgart		like-minded engineersOpen exchange of experi-		Infineon offers : RF to sensors. I
						ence, ideas, discussion of		ductor technolo
09:40	EuMIC01-3	EuMIC02-3	EuMIC03-3	EuMIC04-3		problems		components wil
10:00	Compact Stacked Rugged GaN Low-Noise Amplifier MMIC under	Comparison of the Low Noise Performance of GaN HEMTs	Transition Time of GaN HEMT Switches and its Dependence on	K-Band FMCW Radar Transceiver with a Reconfigurable Analog		 Informal atmosphere With the great support of the 		support the incr
	Input Power Overdrive Condition	and MIS-HEMTs at Cryogenic Temperatures	Device Geometry Andreas Divinyi', Niklas Rorsman ² , Niklas Billström ¹ ,	Baseband for Breast Cancer Detection on Large Tissue Spread		EuMW 2023 Steering Commit-	12:15	Transceivers for A
	Evelyne Kaule', Peng Luo ² , Serguei A. Chevtchenko ³ , Matthias Rudolph ⁴ , Cristina Andrei ⁵	Mohamed Aniss Mebarki ¹ , Ragnar Ferrand-Drake	Andreas Divingi , Nikias Rorsman , Nikias Binstrom , Mattias Thorsell ³ ¹ Saab AB, ² Chalmers University of Technology, ³ Saab	Martin Maier', Finn Niclas Stapelfeldt', Fabian Hövel',		tee, we are bringing the 15 th ARFTG On-Wafer User's Forum	13:00	Christian Zelger Robert Bosch GmbH, Germa
	¹ Brandenburg University of Technology (BTU), Cottbus, Germany, ² Chengdu Danxi Technology Co., Ltd., ³ Ferdinand-Braun-Institut gGmbH, Berlin,	Del Castillo", Erik Sundin', Denis Meledin', Mattias Thorsell ² , Niklas Rorsman ² , Victor Belitsky ¹ , Vincent Desmaris ¹	AB and Chalmers University of Technology	Alexander Meyer', Vincent Lammert', Vadim Issakov' 'TU Braunschweig		closer to the European micro-		
	Germany, ⁴ Brandenburg University of Technology (BTU), Cottbus, Germany , ⁵ Brandenburg University	¹ Group for Advanced Receiver Development, Chalm- ers University of Technology, ² Microwave Electronics				wave engineering community.		Radar sensors
	of Technology (BTU), Cottbus, Germany	Laboratory, Chalmers University of Technology				The topics for our meeting in Berlin will include methods for		safety and comf requirements fro
10:00	EuMIC01-4	EuMICO2-4	EuMICO3-4	EuMICO4-4		verifying wafer-level calibra-		(system-on-chip
10:20	A Reconfigurable Highly Linear and Robust X-Band GaN LNA	TCAD analysis of GaN HEMT AC parameters through accurate	Accurate Modelling of GaN HEMT Capacitances in the Framework of	Phase- and Amplitude Noise Suppression using a Josephson		tion accuracy, measurement		is essential to in
	Bastien PINAULT ¹ , Jean-Guy Tartarin ¹ , Damien	solution of trap rate equations	the ASMHEMT Model	Arbitrary Waveform Synthesizer		traceability, and sub-THZ measurements.		tor technologies By increasing th
	Saugnon ¹ , Rémy Leblanc ² ¹ Laboratoire d'analyse et d'architecture des systèmes	Eva Catoggio', Simona Donati Guerrieri', Fabrizio Bonani'	Sayed Ali Albahrani', Dirk Schwantuschke ¹ , Sourabh Khandelwal ²	Jaap Essing', Maurice van Wanum', Justin Bouw- meester', Oliver Kieler ² , David Michalak', James Kroll',		measurements.		zation of the Fl
	(LAAS-CNRS), ² Ommic (France)	'Politecnico di Torino	¹ Fraunhofer IAF, Fraunhofer Institute for Applied Solid State Physics, ² Macquarie University, Sydney	Frank Vliet, van' TNO, ²Physikalisch-Technische Bundesanstalt (PTB)		The ARFTG On-Wafer Forum is		also enable fur
						free for the EuMW delegates, exhibitors, and exhibition		cantly increasin Faults caused b
						visitors.		crease in sensor
10:20	EuMIC01-5	EuMIC02-5	EuMIC03-5	EuMIC04-5		If you have any method		In this Plenary
-	On the Survivability of a 28 - 32	Capacitance RF Characterization	Normally-off AIN/GaN HEMTs	100-µW Cryogenic HEMT LNAs for		If you have any questions, please contact the forum or-		way and based (
10:40	GHz GaN Low Noise Amplifier	and Modeling of 28 FD-SOI CMOS	with a DIBL of 1.15 mV/V for RF	Quantum Computing		ganizers at: <u>forums@arftg.org</u>		
	Sanaul Haque', Cristina Andrei', Hossein Yazdani², Matthias Rudolph'	Transistors down to Cryogenic Temperature	Applications Mahmud Dwidar'	YIN ZENG¹, Junjie Li¹, Jõrgen Stenarson², Peter Sobis², Jan Grahn¹				
	¹ Brandenburg University of Technology, ² Ferdinand-		Manniluu DWildi	¹ Chalmers University of Technology, ² Low Noise				

Mahmud Dwidar¹ ¹High Frequency Electronics Group, James Watt School of Engineering, University of Glasgow

¹Chalmers University of Technology, ²Low Noise Factory AB

MONDAY 11:20 - 13:00

Lewark³ HP, ³IMST GmbH

ess: Opening of the European Microwave Integrated Circuits Conference 2023 Chair

Sensor Solutions for greener ICT networks

Germany

more edge and cloud computing will require further expansions of data higher amount of data transmission. The 5G radio networks require on mes less energy per Gbyte data being transmitted compared to 4G. The of massive MIMO architectures improves directivity of data transmission vantage of spatial division according to users' requirements. The active ems have been continuously optimized for lower weight and lower power Whereas power semiconductors have efficiencies in the high nineties, nts still run at system efficiencies of only 50%.

rs solutions for an energy efficient and reliable 5G network from power, s. In this presentation examples along the value chain from the semiconology up to the system concepts on power management and on wireless will be shown and on top how future challenges will be addressed to ncreasing data traffic with lower energy consumption.

or Automotive Radar Sensor Status and Trends

Germany

ors are indispensable components of modern vehicles. State-of-the-art mfort functions cannot be realized without them. The widening range of from low to high end can only be covered with a family of several SoCs hip). To achieve cost targets, installation space and power dissipation, it integrate as much as possible on a SoC. Modern RF CMOS semiconducgies enable such integration, and the single-chip radar is now a reality.

the number of transceivers, computing power, bandwidth, and optimi-FMCW modulation, the generation currently under development will further performance enhancement. Range and separability are signifising again.

I by interference are not yet a major problem. However, the further insors could lead to future conflicts.

ry Talk, the above-mentioned status will be presented in a more precise ed on this, future potential trends shall be sketched up.

MONDAY 14:20 - 16:00

MONDAY 16:40 - 18:20

ROOM	Alpha 6	Beta 5	Beta 6	Beta 7	ROOM	Alpha 6	Beta 5
	EuMICO6 Advanced PAs for Microwave Bands Chair: Paolo Colantonio'	EuMIC07 Novel Techniques for Micro- wave and mm-Wave Circuits and Systems Design	EuMICO8 High-Speed Mixed-Signals Circuits and Systems Chair: Christoph Scheytt'	EuMICO9 Sub-THz Circuits and Tech- niques Chair: Patrick Reynaert ¹		EuMIC10 GaN-PAs for mm-Wave Bands Chair: Patrick Schuh ¹ Co-Chair: Vittorio Camarchia ²	EuMIC11 Novel Devices and their Integration Chair: Marion Matters'
	Co-Chair: Patrick Schuh ² ¹ University of Rome Tor Vergata, ² HENSOLDT Sensors	Chair: Teresa M. Martín-Guerrero' Co-Chair: Alessandro Cidronali ² 'Universidad de Málaga, ² University of Florence	Co-Chair: Friedel Gerfers ² ¹ Heinz Nixdorf Institut Universität Pad- erborn, ² Technische Universität Berlin	Co-Chair: Sébastien Chartier ² 'KU Leuven ESAT-MICAS, ² IAF-Fraun- hofer: Fraunhofer Institute for Applied Solid-State Physics		'HENSOLDT Sensors, ² Politecnico di Torino	Co-Chair: Lars-Erik Wernersson ² ¹ TU Eindhoven, ² Lund Univeristy
14:20 14:40	EuMICO6-1 Power Amplifier MMICs for Phased-Array Applications Patrick Schuh' INDUSTRIAL KEYNOTE 'Hensoldt	EuMICO7-1 RF Circuit Design in the Era of Artificial Intelligence Ben Gu' INDUSTRIAL KEYNOTE 'Cadence Design Systems	EuMICO8-1 SiGe BiCMOS Receiver Chain for FMCW Automotive Photonic- Radar Applications Christoph Hoehn', Can Çalışkan', Stefan Preußler' 'Sicoya GmbH	EuMICO9-1 GaN-based Power Amplifier MMIC and Module for D-Band Applica- tions Dirk Schwantuschke', Erdin Ture', Peter Brückner', Philipp Neininger', Axel Tessmann', Martin Zink', Michael Kuri', Dirk Meder', Sandrine Wagner', Roger Lozar' 'Fraunhofer Institute for Applied Solid State Physics (IAF), Germany	16:40 17:00	EuMIC10-1 A 63-73 GHz GaN Power Amplifier with a Compact Power Combiner Mingquan Bao', Bharath kumar Cimbili', Dirk Schwan- tuschke', Kristoffer Andersson', Peter Brückner ² , Rüdiger Quay', Jonas Hansryd' 'Fricsson AB, 'fraunhörer Institute for Applied Solid State Physics (IAF), Germany	EuMIC11-1 Heterointegration of mm-Wave InP-HBT Power Amplifier Chiplets on SiGe-BiCMOS Chip Hady Yacoub!, Marko Rausch', Christoph Stölmacker', Raf Doerner', Mardi Hossain', Ina Ostermay', Taylor Moule', Marthias Wietstruck', Steffen Knigge', Olaf Krüger', Wolfgang Heinrich'
14:40 15:00	EuMICO6-2 A Push-Pull 6–12 GHz GaN Dual- Stage MMIC PA with Capacitive Cross-Coupling Neutralization for Increased Gain Gregor Lasser', Rob Vissers' 'Chalmers University of Technology	EuMICO7-2 Wideband Automated Tuning of Ka-Band Dual Input Doherty MMIC PA using Bayesian Optimi- zation Mattia Mengozzi', Gian Piero Gibiino', Alberto Maria Angelotti', Alberto Santarelli', Corrado Florian', Paolo Colantonio', Christoph Schulze', Olof Bengtsson' 'University of Bologna (Italy), 'University of Roma Tor Vergata (Italy), 'Ferdinand Braun Institut (FBH)	EuMICO8-2 100-GBd Linear Optical Modulator Driver for Short-Reach Links in 130-nm SiGe:C BiCMOS Tsung-Ching Tsai', Christian Bohn', Ahmet Çağri Ulusoy' 'Karlsruhe Institute of Technology (KIT)	EuMICO9-2 A Third Harmonic 0.54-0.53 THz VCO Radiating Source in 28 nm CMOS Sumeet Londhe', Eran Socher' 'Tel Aviv University	17 <u>:</u> 00 17 <u>:</u> 20	EuMIC10-2 E-Band Downlink GaN PA with a Homogeneous Output Power of 2.3W and a Peak PAE of 30.9% Bharath kumar Cimbili', Christian Friesicke', Friedbert Van Raay', Mingquan Bao', Rüdiger Quay' 'Fraunhofer IAF, Fraunhofer Institute for Applied Solid State Physics, 'Ericsson AB, Sweden	EuMIC11-2 Impact of Off-State Stress on SiGe-channel p-FETs in 22nm FD- SOI under Large-Signal Operation Dang Khoa Huynh', Quang Huy Le', Steffen Lehmann', Zhixing Zhao', Germain Bossu', Wafa Arfaoui', Thomas Kampfe', Mathias Rudolph' 'Fraunhofer IPMS-CNT, 'Fraunhofer IPMS, Center Nanoelectronic Technologies, 'Globalfoundries Dresden, 'Ulrich L. Rohde Chair of RF and Microwave Techniques, Brandenburg University of Technology (BTU), Cottbus, Germany
15:00 15:20	EuMICO6-3 A Differential GaN Power Ampli- fier with < 1° AM-PM Distortion for 5G mm-Wave Applications Dongyang Yan', Sehoon Park', Yang Zhang', Dries Peumans', Mark Ingels', Piet Wambacq' 'IMEC and Vrije Universiteit Brussel, 'imec, Belgium	EuMICO7-3 Load Pull-Driven Behavioral Mod- elling of Microwave Switches for the Design of Tunable Reflective Terminations Seved Urman Ghozati', Roberto Quaglia', Ehsan Azad', Jeff R. Powell', Paul Tasker', Steve C. Cripps' 'Cardiff University, 'Compound Semiconductor Application Catapult, 'Skyarna Ltd	EuMICO8-3 A Bulk-Controlled 12 GS/s Track and Hold Amplifier with >58 dBc SFDR and >53.5 dB SNDR in 22 nm FD-SOI CMOS Enne Wittenhagen', Patrick James Artz', Patrick Kurth', Sebastian Linnhoff', Philipp Scholz', Friedel Gerfers' 'Technische Universität Berlin	EuMICO9-3 A 182 GHz Triple-Stacked Distrib- uted Amplifier in InP HBT Process Can Cui', Phat Nguyen', Nguyen Nguyen', Natalie Killeen', Alexander Stameroff', Anh-Vu Pham' 'University of California Davis (UC Davis), ² Keysight Technologies	17 <u>:</u> 20 17:40	EuMIC10-3 GaN/SiC V-band 33 dBm Power Amplifier with 10% PAE for Inter Satellite Communication Alessandro Fonte', Giuseppe Sivverini', Andrea Meazza', Antonio Traversa', Abberto Colzani', Stefano Moscato', Christian Friesicke' 'SIAE Microelettronica S.p.A., ² Fraunhofer IAF	EuMIC11-3 RF Performance of Large Germa- nium Telluride Switches for Power Application Ismaël Charlet', Bruno Reig', Corentin Mercier ² , Julien Delprato', Vincent Puyal', Clemence Hellion', Marjolaine Allain', Stephane Monfray ² , Alain Fleury ² , Frédéric Gianesello ² , Philippe Cathelin ² , Jose Lugo-Alvarez ¹ 'CEA - LETI, 'STMicroelectronics
15:20 15:40	EuMICO6-4 A Ka-Band 15 W Output Power and >30% PAE GaN MMIC Power Amplifier with Low IMD3 Over 600 MHz Tone Spacing for SATCOM Reigo Nakatani', Yutaro Yamaguchi', Ko Kanaya', Shintaro Shinjo'	EuMICO7-4 InP DHBT On-Wafer RF Characteri- zation and Small-Signal Modelling up to 220 GHz Nil Davy', Marina Deng [#] , Virginie Nodjiadjim ¹ , Chhandak Mukherjee [*] , Muriel Riet ¹ , Colin Mismer ¹ , Bertrand Ardouin ¹ , Cristell Maneux ² ¹ III-V Lab, a joint Lab from Nokia, Thales and CEA, ^a University of Bordeaux, Bordeaux INP, UMR CNRS 5218, IMS Laboratory	EuMICO8-4 The Fastest CMOS Single-Channel 5-bit Flash ADC Operating at 18.5 GS/s in 22 nm FD-SOI Nima Lotfi', Philipp Scholz [*] , Friedel Gerfers [*] [*] Technische Universität Berlin, [*] Technische Universität Berlin	EuMICO9-4 A 272 GHz InP HBT Direct-Conver- sion Transmitter with 14.1 dBm Output Power Utku Soylu', Amirreza Alizadeh', Ahmed Samir Hamed Sayed Ahmed', Munkyo Seo', Mark J. W. Rodwell' 'University of California Santa Barbara, "Sungkyunk- wan University	17:40 18:00	EuMIC10-4 A 2.5W/mm High-Power Density V-Band Power Amplifier Using 150 nm GaN Technology Beyond fI Bharath kumar Cimblil', Christian Friesicke', Sebastian Krause', Friedbert Van Raay', Rüdiger Quay' 'Fraunhofer IAF, Fraunhofer Institute for Applied Solid State Physics	EuMIC11-4 A Novel Reconfigurable RF Switch Based on Ferroelectric Hafnium Oxide FeFET Fabricated in 22 nm FDSOI Technology Sukhrob Abdulazhanov', Dang Khoa Huynh', Quang Huy Le', Thomas Kämpfe', Gerald Gerlach' 'Fraunhofer IPMS, Center Nanoelectronic Technolo- gies, 'TU Dresden, Germany
15:40 16:00	EuMICO6-5 A 100 W High Efficiency Hybrid Broadband GaN Power Amplifier for Galileo Navigation System Stela Furkhi', Simone De Marzi', Lorena Cabria ² , Rocco Giofre ¹ , Paolo Colantonio ¹ 'Università degli Studi di Roma 'Tor Vergata', ² TTI	EuMICO7-5 Varactor Characterization Procedure for Large-Signal High- Frequency Applications Aarón García-Luque', Teresa M. Martín-Guerrero', Francisco J. Mata-Contreras' 'Telecommunication Research Institute (TELMA), Universidad de Málaga	EuMICO8-5 190 GBd PAM-4 Signal Generation using Analog Multiplexer IC with On-Chip Clock Multiplier Jonathan Schostak', Tobias Tannert', Markus Grözing [*] , Volker Jungnickel', Christian Schmidt', Holger Rücker ⁴ , Manfred Berroth', Ronald Freund' 'Fraunhofer Heinrich Hertz Institute, 'University of Stuttgart, 'HP - Leibniz-Institute für innovative Mikroelektronik	EuMICO9-5 A Broadband D-Band Power Detector System in SiGe 130 nm BiCMOS Technology Christoph Herold', Thomas Mausolf', Corrado Carta', Andrea Malignaggi' 'IHP - Leibniz Institut für innovative Mikroelektronik	18:00 18:20	EuMIC10-5 V-Band Power Amplifier MMIC on InAINGaNSiC HEMT Technology Mohamed Bouslama', Stéphane Piotrowicz', Nicolas Michel', Linh Trinh-Xuan', Jonathan Leroy', Sébastien Aroulanda', Samira Driad', Louiza Hamidouche', Jean- Claude Jacquet', Quentin Lévesque', Mourad Qualli', Christophe Chang', Philippe Fellon', Sylvain L. Delage' 'III-V Lab, a joint Lab from Nokia, Thales and CEA, 'UMS GmbH, 'UMS SAS	EuMIC11-5 An Integrated Planar Guanella Balun with the Quasi-Coaxial Structure on GaAs Substrate Masaomi Tsuru', Tsukasa Hirai', Yusuke Omori', Naoki Sakai', Kenji Itoh' 'Kanazawa Institute of Technology

Beta 6

EuMIC12 Frequency Conversion Circuits

Chair: Vadim Issakov¹ Co-Chair: Nils Pohl² ¹TU Braunschweig, ²Ruhr University Bochum

EuMIC12-1 A 75-140 GHz Frequency Quadrupler with Milli-Watt Level Output Power in 22nm FDSOI

Ahmed Elmenshawi¹, Muhammad Waleed Mansha¹, Sriram Muralidharan², Mona M. Hella¹ ¹Rensselaer Polytechnic Institute, ²Analog Devices Inc

EuMIC12-2 A X4 Multiplier MMIC to E-Band

Frequencies with High Spectral Purity in 50 nm mHEMT Technology

Rainer Weber¹, Sandrine Wagner¹, Arnulf Leuther¹, Michael Mikulla¹ ¹Fraunhofer IAF

EuMIC12-3 A Wideband W-Band Frequency

Tripler With a Novel Mode-Selective Filter for High Harmonic Rejection

Arjith Chandra-Prabhu¹, Janusz Grzyb¹, Philipp Hillger Bernd Heinemann², Holger Rücker², Ullrich Pfeiffer¹ ¹University of Wuppertal, Wuppertal, ² IHP-Leibniz-Institut für innovative Mikroelektronik

EuMIC12-4

A D-Band Frequency Doubler with Gm-Boosting Technique in 28-nm CMOS

Chung-Chia Chien¹, Huei Wang¹, Yunshan Wang¹, Yuen-Sum Ng¹

¹National Taiwan University, Taiwan

EuMIC12-5 A 365-410 GHz Push-Push Frequency Doubler with Driving Stage in SiGe BiCMOS

Tobias Carl Welling¹, Justin Romstadt¹, Florian Vogelsang¹, Klaus Aufinger², Nils Pohl³ ¹Institute of Integrated Systems, Ruhr University Bochum, Germany, ²Infineon Technologies, Germany, ³Institute of Integrated Systems, Ruhr University Bochum, Germany / Fraunhofer Institute for High Frequency Physics and Radar Techniques, Germany

Beta 7

EuMIC13 Circuits and Techniques for Phased-Array Systems

Chair: Aleksey Dyskin¹ Co-Chair: Frank E. van Vliet² ¹Nvidia, ²TNO Defense, Safety and Security

EuMIC13-1 Wideband Reflection-Type p-i-n Diode Phase Shifters in GaAs MMIC Technology at W-Band

Artem Vilenskiy¹, Yingqi Zhang¹, Vessen Vassilev¹, Viktor Chernikov¹, Marianna Ivashina¹ ¹Chalmers University of Technology

EuMIC13-2 A Dual-Band Vector-Sum Phase Shifter using I-Q Phase Compensation Technique for 5G Applications

Xin Xu¹, Jens Wagner¹, Frank Ellinger¹ ¹Technische Universität Dresden

EuMIC13-3 SiGe BiCMOS Ka-Band Integrated Transmitter for SatCom Phased-Array Applications

Matteo Angelo Fumagalli¹, Alberto Colzani¹, Ales-sandro Fonte¹

¹SIAE Microelettronica S.p.A.

EuMIC13-4 K-Band Receiver on SiGe BiCMOS Technology for SatCom Phased Array Systems

Alberto Colzani¹, Matteo Angelo Fumagalli¹, Alessandro Fonte¹

¹SIAE Microelettronica S.p.A.

EuMIC13-5 Ultra-Wideband mmW Digital Step Attenuator

Philipp Neininger¹, Fabian Thome¹, Laurenz John¹, Arnulf Leuther¹, Sébastien Chartier¹, Rüdiger Quay¹ ¹Fraunhofer Institute for Applied Solid State Physics IAF

Alpha 5/6

¹NEC Corporation

ROOM

TUESDAY 09:00 - 10:40

	Beta 3/4	Beta 6	ROOM	Beta 7	Beta 8
and Packag-	EuMIC/EuMC01 Focused Session Low Noise mm-Wave Integrated Tech- nologies for Sub-THz Wireless	EuMIC15 Building Blocks of Beamform- ing Front-Ends Chair: Ingmar Kallfass'		EuMIC16 Advanced PAs on SiGe & InP Technologies Chair: Franco Giannini ¹	EuMCO2 Advances in front-end architectures and active components
I Bhutani² , ² Karlsruhe Institute	Communication Chair: Alessandro Fonte' Co-Chair: Luca Aluigi ² 'SIAE Microelettronica S.p.A., ² Huawei Technologies	Co-Chair: Ho-Jin Song ² 'University of Stuttgart, ² Pohang Univer- sity of Science and Technolog		Co-Chair: Gijs van der Bent² 'University of Rome Tor Vergata, ² TNO	Chair: Lorenz-Peter Schmidt' Co-Chair: Nils Weimann ² 'Uni Erlangen, ² University of Duisburg- Essen
ging Technolo- cts and Front-End limetre-Wave 5G/	EuMIC/EuMCO1-1 Design methodologies for mm- Wave transceivers in Bi(CMOS) for next-generation wireless and	EuMIC15-1 V- Through W-Band GaN Active Circulator Anthony Romano', Timothy Sonnenberg', Laila	09:00 09:20	EuMIC16-1 A Compact SiGe BiCMOS Distrib- uted Power Amplifier in 5 - 24 GHz Kutay Altintas', Abdurrahman Burak', Tahsin Alper	EuMCO2-1 Low-Noise Amplifiers for the Arctic Weather Satellite Laurenz John', Fabian Thome', Rainer Weber', Arnulf
ions	optical applications	Fighera Marzall', Zoya Popovic' 'University of Colorado - Boulder		Ozkan', Yasar Gurbuz' 'Sabanci University	Leuther ¹ , Axel Tessmann ¹ , Hermann Massler ¹ , Anders Emrich ² , Josefina Adebahr ² , Ville Kangas ³
(EYNOTE	Domenico Pepe' INDUSTRIAL KEYNOTE 'Renesas Design Zurich AG				'Fraunhofer IAF, Fraunhofer Institute for Applied Solid State Physics, 'Omnisys Instruments, 'Euro- pean Space Agency, ESA/ESTEC
uation of a rated Waveguide valls for H-Band	EuMIC/EuMC01-2 Fully Integrated Built-In Self Test of Milllimeter-Wave LNA based on Avalanche Noise Diodes in 130 nm	EuMIC15-2 A Ka-band CMOS Active Phase Shifter Using Active Balun for Phase Optimization	09:20 09:40	EuMIC16-2 A 22-42 GHz 28 nm FD-SOI 3:1 VSWR Resilient Balanced Power Amplifier for 5G Application	EuMCO2-2 Enabling RF Circuit Techniques for 5G and beyond Florinel Balteanu'
organic substrate	SiGe BiCMOS Technology	Jimin Lee', Jaeyong Lee', Seongjin Jang', Changkun Park'		Gwennaël Diverrez ¹ , Eric Kerhervé ¹ , Magali De Matos ¹ , Andreia Cathelin ²	¹ Skyworks Solutions Inc.
ha Bhutani², Thomas Zwick² hnology, ²Karlsruhe KIT)/ Institute of Radio nd Electronics (IHE)	Guendalina Simoncini', Valentina Palazzi', Giulia Drecchini', Federico Alimenti' 'Università degli Studi di Perugia	¹ Intelligent Microwave Systems Lab., Soongsil University, Republic of Korea		¹ Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, F-33400 Talence, France, ² ST Microelectronics, Crolles, France	
aging Integration MOS ICs Operat- GHz édéric Gianesello', Cyril nau ² versité Côte d'Azur, ⁷ IEMN	EuMIC/EuMCO1-3 Modelling, Design, and Charac- terization Challenges of a Gallium Arsenide High-linearity Low-Noise Amplifier With Gain Control at W-band Patrick Ettore Longhi', Antonio Serino', Sergio Col- angeli', Walter Ciccognani', Shikha Swaroop Sharma', Swati Sharma', Ernesto Limiti' 'Università di Roma "Tor Vergata"	EuMIC15-3 V- and W-band GaN MMIC Switches Timothy Sonnenberg', Anthony Romano', Shane Verploegh', Zoya Popovic' 'University of Colorado Boulder	09:40 10:00	EuMIC16-3 A W-band Class-F234 SiGe-HBT Power Amplifier with 35/19.7 % Peak/PB06dB PAE and 26 % 1-dB Large-Signal Power Bandwidth Eren Vardarli', Mario Krattenmacher', Christoph Weimer', Austin Ying-Kuang Chen', Michael Schröter' 'Dresden University of Technology, 'University of California, Santa Cruz	EuMCO2-3 Fast-Phase-Switching Current- Mode Phase Shifter for Beyond 5G Phased Array Antenna Asaka Kobayashi', Ren Imanishi', Hideyuki Nosaka' 'Ritsumeikan University
ions for Loopback Iged Antennas Launchers	EuMIC/EuMC01-4 A D-Band Low-Noise-Amplifier in SiGe BiCMOS with Broadband Multi-Resonance Matching Networks Guglielmo De Filippi', Lorenzo Piotto', Andrea Bilato', Andrea Mazzanti 'Dept. of Electrical, Computer and Biomedical Engineering, University of Pavia	EuMIC15-4 Design of a 22-55 GHz SPDT Switch MMIC with GaAs PIN Diodes Sahand Noorizadeh', Stephen Ngamate [®] , Trang Nguyen [®] 'Northrop Grumman Corporation, [®] NI	10:00 10:20	EuMIC16-4 A Full G-band Power Amplifier with 34 % Peak PAE in InP-DHBT Technology Maruf Hossain', Ralf Doerner', Wolfgang Heinrich', Viktor Krozer' 'Ferdinand-Braun-Institut (FBH) gGmbH, Leibniz- Institut für Höchstfrequenztechnik	EuMCO2-4 A V-Band 16% Efficiency Frequency Doubler-Based RF Beamforming Front-End Module for Vector Modulated Signal Transmission Mahitab Eladwy', Ahmed Ben Ayed', Ali M. Darwish', Slim Boumaiza' 'University of Waterloo, ² Army Research Laboratory
Ilti-Layer Packaging and sing Aerosol Jet	EuMIC/EuMCO1-5 A Compact 120 GHz LNA in 22 nm FD-SOI with Back-Gate Control- lable Variable-Gain	EuMIC15-5 60 W Stacked-HEMT Based Asym- metric X-Band GaN SPDT Switch for Single Chip T/R Modules	10:20 10:40	EuMIC16-5 Design and Analysis of a 50 GHz InP DHBT Class-E Power Amplifier Providing 2.3 mW/µm ²	EuMCO2-5 Aluminium Based Ka-Band Radia- tor Combined with an Innovative SSPA Housing
w Hodek', Premjeet Chahal', polymerou' ty	Martin Rack', Lucas Nyssens', Quang Huy Le ³ , Dang Khoa Huynh', Thomas Kämpfe ⁹ , Jean-Pierre Raskin', Dimitri Lederer ¹ ¹ Université catholique de Louvain, ² Université catholique de Louvain, ⁹ Fraunhofer IPMS, Center Nanoelectronic Technologies	Volkan Erturk', Armagan Gurdal', Busra Cankaya Akoglu', Ekmel Özbay' 'Georgia Institute of Technology, 'Gallium Semiconductor, 'Nanotechnology Research Center (NANOTAM), 'Bilkent University		Venkata Pawan K M Rao Sriperumbuduri', Hady Yacoub', Andreas Wentzel', Tom Keinicke Johansen', Matthias Rudolph' 'BTU, ² Ferdinand-Braun-Institut (FBH), Leibniz- Institut für Höchstfrequenztechnik, ² Technical University of Denmark (DTU), ³ Brandenburgische Technische Universität Cottbus-Senftenberg	Michael Kilian ¹ , Philipp Kohl ² , Matthias Tonnier ³ , Maria Wochner ² , Christian Hartwanger ⁴ ¹ Airbus Defence & Space, ² Airbus Defence and Space GmbH, ³ Tesat Spacecom GmbH & Co. KG

TUESDAY 09:00 - 10:40

Beta 2

NUUM	Alpha J/U	Dela Z	Dela J/4	Dela U
	EuMIC14 CMOS Circuits Techniques for Communication Applications Chair: Aleksey Dyskin ¹ Co-Chair: Herbert Zirath ² 'Nvidia, ² Chalmers University of Technology	EuMCO1 Interconnects and Packag- ing - I Chair: Mehmet Kaynak ¹ Co-Chair: Akanksha Bhutani ² 'Texas Instruments, ² Karlsruhe Institute of Technology (KIT)	EuMIC/EuMCO1 Focused Session Low Noise mm-Wave Integrated Tech- nologies for Sub-THz Wireless Communication Chair: Alessandro Fonte' Co-Chair: Luca Aluigi ² 'SIAE Microelettronica S.p.A., ² Huawei Technologies	EuMIC15 Building Blocks of Bea ing Front-Ends Chair: Ingmar Kallfass' Co-Chair: Ho-Jin Song ² 'University of Stuttgart, ² Pohar sity of Science and Technolog
09:00 09:20	EuMIC14-1 A 433MHz OOK Wake-up Trans- mitter with Integrated Inverse Class E in 22 nm FD-SOI Andres Seidel', Bastian Lindner', Jens Wagner', Frank Ellinger' 'TU Dresden, Germany	EuMCO1-1 Advanced Packaging Technolo- gies: Interconnects and Front-End Modules for Millimetre-Wave 5G/ Beyond Applications Kamal Samanta' INDUSTRIAL KEYNOTE 'AMWT Ltd UK	EuMIC/EuMC01-1 Design methodologies for mm- Wave transceivers in Bi(CMOS) for next-generation wireless and optical applications Domenico Pepe' INDUSTRIAL KEYNOTE 'Renesas Design Zurich AG	EuMIC15-1 V- Through W-Band GaN A Circulator Anthony Romano', Timothy Sonnenberg' Fighera Marzall', Zoya Popovic' 'University of Colorado - Boulder
09 <u>:</u> 20 09:40	EuMIC14-2 A 60 GHz Carrier Recovery Circuit in CMOS 28nm FD SOI for BPSK/ QPSK PLL-less High Data Rate Receivers Alexandre Siligaris', Cédric Dehos', Jean-Baptiste David', Léa Barrau', José-Luis Gonzalez Jimenez' 'University of Grenoble Alpes, CEA-Leti	EuMCO1-2 Design and evaluation of a Substrate Integrated Waveguide with solid side walls for H-Band applications on organic substrate Jaachim Hebeler', Akanksha Bhutani ² , Thomas Zwick ² 'Karlsruhe Institut of Technology, 'Karlsruhe Institute of Technology, 'Karlsruhe	EuMIC/EuMCO1-2 Fully Integrated Built-In Self Test of Milllimeter-Wave LNA based on Avalanche Noise Diodes in 130 nm SiGe BiCMOS Technology Guendalina Simoncini', Valentina Palazzi', Giulia Orecchini', Federico Alimenti' 'Università degli Studi di Perugia	EuMIC15-2 A Ka-band CMOS Active P Shifter Using Active Balue Phase Optimization Jimin Lee', Jaeyong Lee', Seongjin Jang', (Park' 'Intelligent Microwave Systems Lab., Sc University, Republic of Korea
09:40 10:00	EuMIC14-3 Transformed-Based mm-Wave Low-Loss Active Isolator in 22nm FD-SOI Bharat Kalyan Thota', Patrick Reynaert' 'KU Leuven	EuMCO1-3 Innovative Packaging Integration Strategy for BiCMOS ICs Operat- ing beyond 200 GHz David A. Ovalle-Taylor', Frédéric Gianesello', Cyril Luxey', Guillaume Ducournau' 'STMicroelectronics, ² Université Côte d'Azur, ¹ IEMN	EuMIC/EuMCO1-3 Modelling, Design, and Charac- terization Challenges of a Gallium Arsenide High-linearity Low-Noise Amplifier With Gain Control at W-band Patrick Ettore Longhi', Antonio Serino', Sergio Col- angeli', Walter Ciccognani', Shikha Swaroop Sharma', Swati Sharma', Ernesto Limiti' 'Università di Roma "Tor Vergata"	EuMIC15-3 V- and W-band GaN MMIC Switches Timothy Sonnenberg', Anthony Romano' Verploegh', Zoya Popovic' 'University of Colorado Boulder
10:00 10:20	EuMIC14-4 A Broadband LNA and Sub-Har- monic Mixer Based Multi-Mode Rx in 22 nm CMOS Soumya Gupta', Benjamin Jann', Kareem Rashed', Arun Natarajan' 'Oregon State University	EuMC01-4 Compact Transitions for Loopback Testing of Packaged Antennas with Waveguide Launchers Abhijit Pal', Martin Schneider' 'University of Bremen	EuMIC/EuMCO1-4 A D-Band Low-Noise-Amplifier in SiGe BiCMOS with Broadband Multi-Resonance Matching Networks Guglielmo De Filippi', Lorenzo Piotto', Andrea Bilato', Andrea Mazzanti 'Dept. of Electrical, Computer and Biomedical Engineering, University of Pavia	EuMIC15-4 Design of a 22-55 GHz SPI Switch MMIC with GaAs F Diodes Sahand Noorizadeh', Stephen Ngamate ² , Nguyen [*] 'Northrop Grumman Corporation, ² NI
10:20 10:40	EuMIC14-5 A D-Band Gain-Switching Phase Shifter with Wideband and Low Temperature-Dependency in 22- nm FD-SOI CMOS Toshihide Kuwabara', Naoki Oshima', Koki Tanji', Shinji Hachiyama', Kazuki Kunihiro'	EuMCO1-5 High Density Multi-Layer Millimeter-Wave Packaging and Interconnects Using Aerosol Jet Printing Nicholas Sturim', Matthew Hodek', Premjeet Chahal', John Albrecht', John Papapolymerou'	EuMIC/EuMCO1-5 A Compact 120 GHz LNA in 22 nm FD-SOI with Back-Gate Control- lable Variable-Gain Martin Rack', Lucas Nyssens ² , Quang Huy Le ⁹ , Dang Khoa Huynh ⁷ , Thomas Kämpfe ⁹ , Jean-Pierre Raskin, Dimitri Lederer'	EuMIC15-5 60 W Stacked-HEMT Base metric X-Band GaN SPDT for Single Chip T/R Moduli Volkan Erturk', Armagan Gurdal', Busra Akoglu', Ekmel Ozbay' 'Georgia Institute of Technology, 'Galliu Semiconductor, 'Nanotechnology Resea

¹Michigan State University

Beta 9

EuMC03

Integration technologies based on advanced materials and topologies

Chair: Martin Vossiek¹ Co-Chair: Ke Wu² ¹Friedrich-Alexander University Erlangen-Nuremberg, ²Polytechnique Montreal

EuMC03-1

Low-Loss MIM Capacitor on Thick SiO2 Dielectric for GaN-on-Si Substrates with Standard and Elevated Top Electrode Configurations

Abdalla Eblabla¹, Arathy Varghese¹, Khaled Elgaid¹, Hareesh Chandrasekar², Michael Uren², Martin Kuball² ¹Cardiff Univeristy (UK), ²University of Bristol

EuMC03-2

Sub-mmWave Transmission Lines on Silicon-Based Technologies

shiqi ma', Lucas Nyssens', Jean-Pierre Raskin¹, Dimitri Lederer¹

¹Université catholique de Louvain

EuMC03-3

An Ultra-Wideband DC-Block on Thin-Film Ceramic for the Next Generation of Test and Measurement Applications Up to 150 GHz

Andre Scheder¹, Tim Pfahler¹, Anna Bridier², Jan Schür¹, Martin Vossiek¹

¹Friedrich-Alexander Universität Erlangen-Nürnberg, ²Rohde & Schwarz GmbH & Co. KG

EuMC03-4

Reconfigurable Impedance Matching Network for 5G Mid-Band Utilizing Phase-Change Materials Tejinder Singh¹, Raafat R. Mansour¹

¹University of Waterloo

TUESDAY 10:40 - 13:00

Exhibition Hall

EuMIC17 EuMIC Poster

Chair: Ulrich Lewark¹ ¹IMST GmbH

EuMIC17-1 EuMIC17-5 EuMIC17-9 THz Oscillation in Doped-GaN A Ku- and Ka-Band Dual-Band A Continuously Adjustable True Signal Source SiGe MMIC Realiza-Time Delay for D-Band Timed Based Planar Gunn Diode with tion by Using Wideband SPDT the T-shape Channel Antenna Arravs LILI HUO¹. Ravikiran Lingaparthi². Nethaii Dhar-Switches Manuel Koch¹, Florian Probst¹, Sascha Breun¹, marasu², K Radhakrishnan³, Sergio García-Sánchez⁴, Javier Mateos⁴, Kirill Shabdurasulov² Pohert Weig Christian Bredendiek¹, Simon Küppers², Klaus Aufinger³, Nils Pohl⁴ ¹Friedrich-Alexander-Universität Erlangen-Nürnberg ¹CINTRA CNRS/NTU/Thales UMI 3288, Nanyang ¹Fraunhofer Institute for High Frequency Physics and Radar Techniques FHR, ²2pi LABS GmbH, ¹In-fineon Technologies AG, ⁴Ruhr-University Bochum, Bochum, Germany Technological University, ²Temasek Laboratories, Nanyang Technological University, ³Center for Micro/Nano-electronics (CMNE), Nanyang Technological University, ⁴Universidad de Salamanca EuMIC17-2 EuMIC17-6 EuMIC17-10 Thermal Transient Measurements An 11-15.8 GHz Class-D DCO with InP RTD Detector for THz Apof GaN HEMT Structures by -117.5 dBc/Hz Phase Noise at 1 plications Electrical Measurements MHz Offset in 22nm FDSOI CMOS Simone Clochiatti¹, Robin Kress¹, Enes Mutlu¹, Florian Vogelsang², Marcel van Delden², Nils Pohl², Werner Prost¹, Nils Weimann¹ Technology Tobias Kristensen¹, Andreas Divinyi², Johan Bremer¹, Torbiörn M.I. Nilsson², Mattias Thorsell³ Qiao Yang¹, Olaf Zimmerhackl², Michael Otto², Xuemei Hui¹, Shafi Sved³ ¹University of Duisburg Essen, ²Ruhr-Universität Bochum ¹ Chalmers University of Technology, ²Saab AB, ³Chalmers University of Technology, Saab AB ¹GlobalFoundries.China. ²GlobalFoundries.Germany. ³GlobalFoundries, USA EuMIC17-3 EuMIC17-7 EuMIC17-11 The Role of Gate Leakage on SPST and SPDT 60 GHz Switchable V-Band Power Ampli-Surface-Related Current Collapse Travelling-Wave Switches in 22 fier with Ultra-Fast Turn-On for in AlGaN/GaN HEMTs nm FD-SŎI Aggressive Duty-Cycling Christos Zervos¹, Petros Beleniotis¹, Sascha Krause², Dan Ritter³, Matthias Rudolph⁴ Ouentin Courte¹, Martin Rack¹, Dimitri Lederer¹, Maximilian Gottfried Becker¹, Marco Gunia¹, Diego Jean-Pierre Raskin Mendez², Frank Ellinger¹ ¹Brandenburg University of Technology Cottbus Senftenberg (BTU), ²Kongsberg Defence and ¹UCLouvain ¹TU Dresden, ²Pontificia Universidad Javeriana Aerospace, Space Electronics, ¹Gechnion-Israel Institute of Technology, ⁴Brandenburg University of Technology Cottbus-Senftenberg (BTU), Ferdinand-Braun-Institut gGmbH, Leibniz-Institut für Höchstfrequenztechnik (FBH) EuMIC17-8 EuMIC17-4 22FDX® EDMOS for 5G mmW

Power Amplifier Applications Ming-Cheng Chang', Zaid Al-Husseini', Shafi Syed', Shihni Ong', Lyehock Chan', Wafa Arfaoui', Dieter Lipp', Elan Veeramani', Jerome Mazurier', Andreas Knorr', Nick Comfoltey', Tianbing Chen' ¹Global Foundries

A 12 GS/s RF-Sampler Employing Inductive Peaking in 22 nm FD-SOI CMOS Enne Wittenhagen¹, Patrick Kurth¹, Nima Lotfi¹, Julius Edler¹, Philipp Scholz¹, Friedel Gerfers¹ ¹Technische Universität Berlin

Posters presenters will be ready around their stands by 10:40.

TUESDAY 11:20 - 13:00

ROOM Alpha 5/6 EuMW01 EuMW/EuMC Opening Session Chair: Thomas Zwick¹ Co-Chair: Ilona Rolfes² ¹Karlsruhe Institute of Technology, ²Ruhr University Bochum Welcome Address: Opening of the European Microwave Week 11:20 2023 11:25 Thomas Zwick EuMW General Chair EuMA Welcome Address 11:25 Frank van den Bogaart 11:35 EuMA President 11:35 Greetings from the IEEE MTT-S Nuno Borges Carvalho 11:40 IFFF MTT-S President Greetings from the EuMW 2023 Platinum Sponsor 11:40 Keysight Technologies 11:45 Technical Programme of the EuMW 2023 11:45 Ingmar Kallfass 11:50 EuMW General TPC Chair Announcements and Notifications 11:50 Ilona Rolfes and Amelie Hagelauer 11:55 EuMC Chair and EuMC TPC Chair

PROGRAMME

Near-Field Terahertz Networking 11:55

Daniel Mittleman 12:40

School of Engineering at Brown University, USA

The recent dramatic growth in interest in the use of highfrequency (millimetre-wave and terahertz) carrier waves for wireless communications has spurred a great deal of research activity. In some cases, such as fixed point-to-point backhaul, systems operating above 100 GHz are already in or nearing commercial deployment. On the other hand. significant research challenges remain for the deployment of local area networks, which must manage factors such as user mobility and line-of-sight blockage of directional beams. Interestingly, such networks may often be able to operate in a regime in which most or all of the broadcast sector is located in the near field of the transmitter. This possibility opens up a host of new ideas for wave front engineering, in particular wave fronts that can only exist in the electromagnetic near field. Here, we discuss a few examples, focusing on the class of wave fronts that can be engineered to curve around an intervening obstacle, delivering data to a user located in the shadow of the obstacle. This near-field effect presents an intriguing alternative to the popular notion of intelligent reflecting surfaces for blockage mitigation.

12:40	Awards Ceremony Andy Gibson				
13:00					
	EuMA Awards Chair				
	EuMA Outstanding Career Award				
	EuMA Distinguished Service Award				
	EuMA Roberto Sorrentino Prize				
	International Journal of Microwave and Wireless Technolo-				

gies Best Paper Prize

ROOM

14:20

14:40

14:40

15:00

15:00

15:20

15:20

15:40

15:40

16:00

TUESDAY 14:20 - 16:00

ROOM	Beta 7	Beta 8
	EuMIC18 PAs for Communication Systems Chair: Rocco Giofrè' Co-Chair: María J. Madero-Ayora' 'Università di Roma Tor Vergata, ² Univer- sidad de Sevilla	EuMIC19 Circuits for Broadband mm- Wave Transceivers Chair: Hua Wang' Co-Chair: Ulrich Lewark ² 'ETH Zurich, ² IMST GmbH
14:20 14:40	EuMIC18-1 Transmission Line Transformer Based Broadband Differential Class-E PA for Cellular Handset Masatoshi Hase' 'Murata Manufacturing Co., Ltd.	EuMIC19-1 Design of an E-TSPC Flip-Flop for a 43 Gb/s PRBS Generator in 22 nm FDSOI Florian Probst', Jonas Weninger', Andre Engelmann', Vadim Issakov', Robert Weige!' 'Friedrich-Alexander-Universität Erlangen-Nürnberg, 'TU Braunschweig
14:40 15:00	EuMIC18-2 A 24 GHz Harmonic-Injection Doherty Power Amplifier with 42 % PAE at 6 dB OPBO in 100 nm GaN Technology Moise Safari Mugisho', Christian Friesicke', Moham- med Ayad', Thomas Maier', Rüdiger Quay' 'Fraunhofer Institute for Applied Solid State Physics, "UMS - United Monolithic Semiconductors	EuMIC19-2 A Silicon-Based Optical Signal Transmitter for Sub-THz Wireless <u>Communication Systems</u> Kalliopi Spanidou', Luis González-Guerrero', Guillermo Carpintero' 'University Carlos III of Madrid, ² Synopsys Photonics Solutions
15:00 15:20	EuMIC18-3 A Design Approach for Bandwidth Enhancement of 3-Way Doherty PAs Anna Piacibello', Rocco Giofre ² , Paolo Colantonio ² , Vittorio Camarchia' 'Politecnico di Torino, ² Università di Roma "Tor Vergata"	EuMIC19-3 A 32 GHz, 12.8 GSps Direct Sampler and Converter for Direct Microwave Sampling for Terres- trial and Space Applications Francois Bore' 'Teledyne E2V Semiconductors SAS
15:20 15:40	EuMIC18-4 A 20-Watts, GaN MMIC Doherty Power Amplifier for Ku-Band Satellite Communications Seifeddime Fakhfakh' 'United Monolithic Semiconductors (UMS)	EuMIC19-4 A Fully-Differential Travelling- Wave Amplifier up to 110 GHz in a 22 nm FD-SOI CMOS Technology Athanasios Gatzastras', Christian Volmer ² , Ingmar Kalfass ³ ¹ Institute of Robust Power Semiconductor Systems (ILH) - University of Stuttgart, 'Advantest Europe GmbH, ¹ Institute of Robust Power Semiconductor Systems (ILH), University of Stuttgart, Stuttgart, Germany
15:40 16:00	EuMIC18-5 A 39.5 dBm GaN Doherty Ampli- fier MMIC with Phase Control for Ka-band Space Applications Jose Romero Lopera', Michael Ernst Gadringer', Erich Leitgeb', Wolfgang Bösch', Helmut Paulitsch' 'Graz University of Technology	EuMIC19-5 A D-band Low-Noise Amplifier in 28-nm CMOS Technology for Radio Astronomy Applications Li-Jung Huang', Chau-Ching Chiong', Yunshan Wang', Huei Wang', Chung-Chia Chien' 'National Taiwan University, ⁷ Institute of Astronomy and Astrophysics, Academia Sinica

TUESDAY 14:20 - 16:00

Beta 2	Beta 3/4	Beta	6	Alph	a 5/6
EuMCO4 Passive Device Development with Innovative Design Ap- proaches Chair: Anthony Ghiotto' Co-Chair: Angela Stelson ² 'University of Bordeaux, ² NIST	EuMCO5 Focused Session THz antennas and systems Chair: Guillaume Ducournau' Co-Chair: Joachim Oberhammer ² 'University of Lille, ² KTH	temsJoint Women in Microwaves (WiM) and Young Profession- als (YP) EventPanel Sessi Chips Actr2Chairs: Ana Ines Inacio (YP), Cristina Andrei (WiM), Jasmin Grosinger (WiM) 'TNO, The Netherlands, ² Brandenburg University of Technology, Germany,Chair: Validation Co-Chair: Paolo Co-Chair: Paolo Co-Chair: Paolo Co-Chair: Paolo Panel Sessi Chips Act		IC/EuMCO2 Session on European Act Colfgang Heinrich ¹ : Paolo Colantonio ² nd-Braun-Institut gGmbH, Institut für Höchstfrequenztech- versity of Rome Tor Vergata	
EuMCO4-1 Dual-Band Schiffman Phase Shifter with Large Frequency Ratio and Wide Bandwidths	EuMCO5-1 A 2x2 0.232-0.243 THz Coherent Scalable Array in 28 nm CMOS Sumeet Londhe', Eran Socher'	13:00 13:30	niversity of Technology, Austria Get Together with Lunch Boxes	14:20 16:00	Introduction: What is the EU Chips Act Gerhard Kahmen' 'IHP/FMD
Faisal Amin' Nanjing University of Aeronautics & Astronautics	'Tel Aviv University	13:30 15:00	Panel Session Panelists: Wendy Shu', Sherry Hess ² , Anouk Hubrechsen ² , Anna Miskiewicz ⁴ , Mayazzurra Ruggiano ⁵ , Irene Selvanathan ⁶ ¹ Eravant, ² Cadence, ³ AntenneX, ⁴ Apple, ⁹ Thales Nederland, ¹ Neurospace		The Research View: 3 Pitches by European RTOs (FMD, IMEC & LETI) Gerhard Kahmen', Nadine Collaert'.
EuMCO4-2 Ultra-Low-Loss Slot-Line Based Common-Mode Isolator Irmothe Le Gall', Anthony Chiotto [®] , Stefan Varault', Bruno Louis', Grégoire Pillet' THALES DMS, Elancourt, France, [®] Bordeaux INP, MS Laboratory	EuMCO5-2 Experimental Evaluation of a Subharmonic Detector and Cor- responding 1-D Array Concept at 300 GHz Zhenming Tian', Meng Zhang', Hui Yuan', Benedikt Sievert', Michael Eube', Peter Hildenhagen', Hartmut Roskos', Daniel Erni', Andreas Rennings' 'University of Duisburg-Essen, 'Goethe-Universität Frankfurt am Main, 'RF-Frontend GmbH	16:00 18:45	Sightseeing Tour Following the panel, we will have a unique sight- seeing tour of Berlin. Guided tours by Berliner Unterwelten will enter- tain us: From Flak Towers to Mountains of Debris &		Martin Gallezot ^a ¹ HP/FMD, ² imec, ³ LETI The Industrial View: Impulse Presenta- tions by European Industries Volker Ziegler ¹ , Massimo C. Comparini ² ¹ Nokia, ² Thales Alenia Space
EuMCO4-3 A Quasi-TEM Approach for Designing Microvias for PCB Layer Iransition with Minimal Return LOSS Ziad Hata ¹ , Hiroaki Takahash ² , Ahmad Bader Nothman Alterkawi ² , Michael Ernst Gadringer ² , Wolfgang Bösch ¹ Graz University of Technology, ² AT&S	EuMCO5-3 THz Dielectric Resonator Antenna with Rectangular Waveguide Slot Feed Marius Kretschmann ¹ , Akanksha Bhutani ¹ , Peng Lu ² , Andreas Stöhr ² , Thomas Zwick ¹ 'Karlsruhe Institute of Technology (KIT), ² University of Duisburg-Essen		Bunkers, Subways, and the Cold War.		The Foundry View: Panel with Foundry Representatives IHP, MACOM (formerly OMMIC), STM, UMS, QORVO, WIN Panel Discussion
EuMCO4-4 Compact SIW Six-Port With Improved Output Matching and Isolation Bartosz Tegowski', Alexander Kölpin' Hamburg University of Technology (TUHH)	EuMCO5-4 A Chip-Integrated 240-GHz- Reflectarray with Antennas on Glass Superstrate Susame Brandl', Mario Mueh', Christian Wald- schmidt'				
	EuMC05-5 Wideband, High Gain Dielectric Resonator Antenna in Embedded Surface Mount Short Horn in D-Band				
	Elizabeth Boldkor ¹ Coord Cramlich ¹ Lucas Cireto do				

Elizabeth Bekker¹, Georg Gramlich¹, Lucas Giroto de Oliveira¹, Akanksha Bhutani¹, Thomas Zwick¹ ¹Karlsruhe Institute of Technology (KIT)

Beta 9

EuMC06

Multi-Functional and Reconfigurable Planar Filters

Chair: Roberto Gomez-Garcia¹

Co-Chair: Vittorio Tornielli di Crestvolant²

¹University of Alcala, ²HUBER+SUHNER AG

EuMC06-1

Nonreciprocal Filtering Power Divider Using Mixed Static and Time-Modulated Resonators: Numerical Design Approach and Experimental Validation

Girdhari Chaudhary!, Phanam Pech!, Samdy Saron', Dimitra Psychogiou', Yongchae Jeong' 'Jeonbuk National University, South Korea, 'University College Cork & Tyndall National Institute

EuMC06-2

Multi-Functional Bandpass Filters with Frequency Tunability and RF Co-designed Isolator Functionality Kexin Li', Dimitra Psychogiou'

¹UCC-Tyndall

EuMC06-3

Ultrawide In-Band Self-Interference Suppression Using Bandpass Filter-Based RF Cancellers

Kevin Martin', Dimitra Psychogiou' 'University College Cork and Tyndall National Institute

EuMC06-4

Non-Reciprocal RF Co-Designed Filtering Phase Shifters With Continuously Tunable Phase Shift Zixiao Zhang', Dimitra Psychogiou' 'UCC-Tyndall

EuMC06-5

Signal-Interference Bandpass Filters Using Resonant Transversal Filtering Sections With Asymmetrical Transfer Function Characteristics

David Chatzichristodoulou¹, Symeon Nikolaou², Photos Vryonides², Dimitra Psychogiou³ ¹Frederick Research Center, Cyprus , ²Frederick

¹Frederick Research Center, Cyprus , ²Frederick Research Center, Cyprus , ⁷Tyndall National Institute, Cork, T12 R5CP, Ireland

TUESDAY 16:00 - 18:20

Exhibition Hall

EuMIC/EuMC03

EuMIC/EuMC Poster

Chair: Ulrich Lewark¹

Co-Chair: Amelie Hagelauer

¹IMST GmbH, ²Fraunhofer EMFT

¹Incize, ²UCLouvain, ³imec, Belgium

Posters presenters will be ready around their stands by 16:00.

TUESDAY 16:40 - 18:20

Alpha 5/6 EuMIC20 **EuMIC Closing Session** Chair: Friedel Gerfers Co-Chairs: Corrado Carta², Ulrich Lewark³ ¹Technical University of Berlin, ²IHP, ³IMST GmbH 16:40 Session Welcome Friedel Gerfers, EuMIC Chair 16:45 16:45 Leaving the Marconi Era and Entering the Directive Communications and Sensors Era for 5G/6G and SATCOM 17:25 Gabriel M. Rebeiz University of California, USA

> Affordable phased-arrays, built using low-cost silicon, have become an essential technology for high data-rate terrestrial (5G) and satellite (SATCOM) systems to their high gain, electronically steerable patterns, narrow beamwidths, high tolerance to interference and adaptive nulling capabilities. They have also become the backbone of all LEO and MEO satellites both at the payload level and at the user-terminal. High EIRP, high-performance systems at X-band to W-band with analog and digital beamforming capabilities and with multiple beams, are now available at low-cost. These advances are reshaping our communication and sensor systems, as we work to change our world from the Marconi-Era driven by low-gain antenna systems to the Directive Communications era where every antenna, every beam, every sensor is electronically steered. This talk summarizes our work in this area, present some amazing/unbelievable systems, and conclude with future 5G-Advanced and 6G where every device will be connected at Gbps speeds. And all done using Silicon RFICs!

17:25	RFSOI Technology for the RF Front-End: Then, Now and
18:00	Tomorrow
10.00	Julio C. Costa Global Foundries, USA
	RFSOI technologies are used today in the RF section of all cellular handsets, performing a number of different critical RF switching and tuning functions, and recently also pro- viding an even larger number of low noise amplifiers, digi- tal CMOS blocks and critical analog functions. This talk will discuss the history of RFSOI technology, the critical ena- blers that allowed it to in a relatively short amount of time, completely replace the existing III-V switch technologies. The progression to today's modern RFSOI technologies and its array of device options will also be described, as well as future trends in RF switching technologies. In particular, the RF front end of the future will incorporate a number of 3D technologies in both die-to-wafer and wafer-to-wafer bonding approaches in order to reduce critical dimensions while providing superior RF performance.
18:00	Awards Ceremony
18:15	Michael Gadringer, EuMW 2023 Awards Chair
10.13	Friedel Gerfers, EuMIC Chair EuMIC Prize EuMIC Young Engineer Prize Tom Brazil Fellowship Award (by the GAAS® Association)
18:15	Closing Remarks
18:20	Friedel Gerfers EuMIC 2023 Chair
	Invitation to EuMW 2024 Nathalie Deltimple EuMIC 2024 Chair

Beta 2

ing - II

EuMC07

Chair: Yinggang Li¹

Co-Chair: Aurelian Crunteanu²

ROOM

16:40

17:00

TUESDAY 16:40 - 18:20

Beta 3/4	Beta 6	Beta 7	
EuMCO8 Focused Session 6G THz Communications Chair: Andreas Stöhr' Co-Chair: Sebastian Randel ² 'Universität Duisburg-Essen, ² Karlsruhe Institute of Technology (KIT)	EuMW04 Special Session MTT-S Inter-Society Technology Panel Session - Biomedical Applications Chairs: Sandra Costanzo ¹ , Michal Cifra ² , Jungchih Chiao ³ , Ke Wu ⁴ ¹ Univ. of Calabria, ² Czech Acad. of Sci., ³ South. Methodist Univ., ⁴ Polyt. Montreal	EuMCO9 Microwave and mm-Wave Systems and Applications Chair: Mark Bentum ¹ Co-Chair: Ioan E. Lager ² ¹ Eindhoven University of Technology (TU/e), ² Delft University of Technology	
EuMCO8-1 800 GHz Super Heterodyne Link over 645 m with Freq. Duplexing or Point to Point Backhauls . Renau', C. Maye', D. Wrana', S. Haussmann', Kalifass', L. John', B-K. Jung', T. Kuerner', U. Hell- ung', P. Schlegel', R-P. Braun', Y. Leida', T. Kawanishi', . Hisatake', K. Kondou', P. Szriftgiser'', G. Ducournau' Univ. of Lille, 'Univ. of Stutt, 'Fraunh. IAF, 'TU raunsch, 'D'. Telekom, 'SIKU Comm, 'Waseda Iniv., 'Gifu Univ., 'HRCP, 'PhLAM EuMCO8-2 200 Gbit/s Wireless THz Transmis- sion over 52 m using Optoelec- ronic Signal Generation Del Dittmer', Jonas Tebart', Christoph Füllner', hristian Koos', Andreas Stöhr', Sebastian Randel' Institute of Photonics and Quantum Electronics, carlsrube Institute of Technology, 'Department f Optoelectronics, University of Duisburg-Essen, Juisburg, 'Institute of Photonics and Quantum lectronics, Karlsruhe Institute of Technology EuMCO8-3 Effects of Harmonics from Frequency-Multiplicative Carrier Generation in a Superheterodyne BOD GHz Transmit Frontend Dominik Wrana', Simon Haussmann', Ingmar Lalfast' Institute of Robust Power Semiconductor Systems (II), University of Stuttgart, 'Fraunhofer Institute f Applied Solid State Physics (IAF)	 16:40 EuMWO4-1 Beyond Science Fiction: How Wireless Signals, RF Properties of Biomole- cules, Antenna Engineer- ing, and Short Electric Pulses are Shaping the Future of Biomedical Technologies Panelists Changzhi Li', Ralph Hoelzel', Sema Dumaril', Philippe Leveque', Francesca Apollonio* Texas Tech University, USA "Texas Tech University, USA "Texas Tech University of Rome Sapienza, Italy 	EuMCO9-1 Characterising Scattering Parameters of Coaxial Microwave Devices at Milli-Kelvin Tem- peratures for Quantum Computing Technologies Manoj Stanley', Sang-Hee Shin', James Skinner', Jonas Urbonas', Nick Ridler' 'National Physical Laboratory (NPL), Teddington, 'Maury Microwave EuMCO9-2 Temperature-Controlled Disinfec- tion System Using Microwave and Plasma Saleh Alfawaz', Ibrahim Alquaydheb', Sara Ghay- ouraneh', Andrawa Zhou' 'University of Arkansas EuMCO9-3 Low-Complexity Control of an Electrical-Balance Duplexer Jonas Winkelhake', Lukas Hüssen', Muh-Dey Wei', Renato Negra' 'HFE RWTH-Aachen	

Allalysis ul a llinc Architecture Based on Frequency Multipliers Till Schiffmann¹ University

EuMC09-5

Detection of Metal Edge Orientation in Near-Field Imaging Using Higher-Order Mode Coupling

Dennis Hoffmann¹, Jan Hesselbarth¹ ¹University of Stuttgart

ROOM	Beta 8	Beta 9
	EuMW05 Special Session APMC Chair: Wenquan Che ¹	EuMC10 New Technologies in P Filters
	Co-Chair: Maurizio Bozzi² ¹ South China University of Technology, ² University of Pavia	Chair: Giuseppe Macchiarella ¹ Co-Chair: Photos Vryonides ² ¹ Politecnico di Milano, ² Frederi Research Center, Cyprus
	EuMW05-1 Microwave and Millimeter-Wave Filtennas and Their Applications Xiuyin Zhang' 'South China University of Technology	EuMC10-1 Quasi-Elliptic Multi-Band ing Multi-Resonant Acous Lumped-Element Resonat Mohammed R. A. Nasser', Dimitra Psych 'Tyndall NI/ University College Cork

Recent Progress in Assistant Coil Techniques to Overcome Misalignment Problems in Near-Field Wireless Power Transfer (WPT) Systems Yongshik Lee¹, SeoYeon Yoon ¹Yonsei University

EuMW05-2

EuMW05-3

Chao-Fu Wang

Miguel Sanchez-Soriano¹, Rozenn Allanic², Cédric Quendo², Denis Le Berre², Douglas Silva De Vasconcel-los³, Virginie Grimal³, Damien Valente³, Jérôme Billoué³ ¹University of Alicante, ²University of Brest, ³University of Tours

EuMC10-2

Silicon Technology

EuMC10-3

Theory of Characteristic Modes for Modelling Composite Substrate Integrated Coaxial and Slot-line Resonators Structures Steven Matthew Cheng¹, Dimitra Psychogiou¹

INDUSTRIAL KEYNOTE

EuMC10-4

Quasi-Input Reflectionless Bandpass Filter with Quasi-Elliptic Response and Controllable Transmission Zeros Using Coupled Lines

Girdhari Chaudhary¹, Phanam Pech¹, Samdy Saron¹, Dimitra Psychogiou², Yongchae Jeong¹ ¹Jeonbuk National University, South Korea, ²Univer-sity College Cork & Tyndall National Institute

EuMC10-5

Sezawa Mode Enhancement of SAW Resonators on GaN-oninsulator by Optimizing the Metal Thickness and its Application to **RF** Filters

Yutian Zhang¹, Krishna Balram¹, Martin Cryan¹ ¹University of Bristol

EuMC07-1 Low-Cost Transition from Chip to

¹Shenzhen Technology University, ²Xlim -

UMR 7252 - CNRS - Limoges University

TUESDAY 16:40 - 18:20

Waveguide for E-Band Klas Eriksson¹, Torbjörn Dahl¹, Richard Lindman¹, Andreas Martin¹, Kristoffer Andersson ¹Ericsson AB, Sweden

Interconnects and Packag-

17:00 EuMC07-2

Broadband, Via-less Grounded 17:20 Coplanar Waveguide-to-Microstrip Transition in D-band

Elizabeth Bekker¹, Georg Gramlich¹, Alexander Quint¹, Luca Valenziano¹, Lucas Giroto de Oliveira¹, Akanksha Bhutani¹, Thomas Zwick¹ ¹Karlsruhe Institute of Technology (KIT)

EuMC07-3 17:20

A K-Band Wideband Air-Filled 17:40 Coaxial Transmission Line With CNC-Machined Gap Waveguide Package Jin Li¹, Zheming Li¹, Sicheng Chen¹, Zhihong Xu¹, Tao Yuan¹

¹Shenzhen University

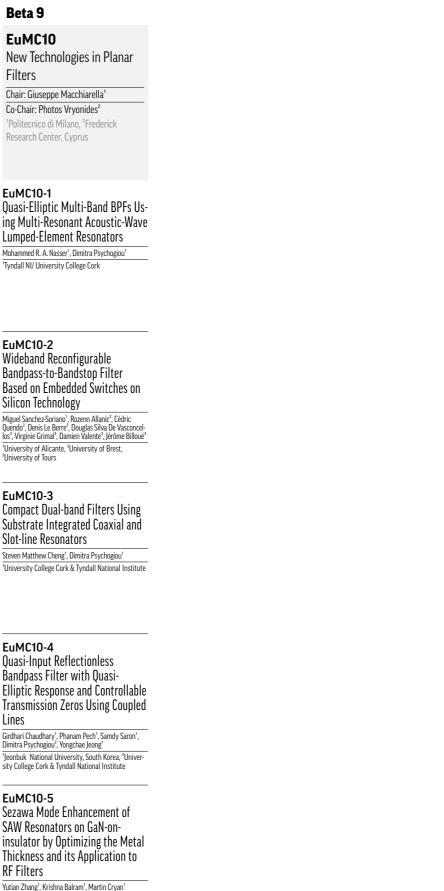
EuMC07-4 17:40

A W-band, Wideband, and Low-18:00 Loss Slot-Coupled Multi-Layer Transition with Compact Leakage-Suppressing Scheme Ding Wang¹, Yu Jian Cheng¹, Yong Fan¹ ¹University of Electronic Science and Technology of China

EuMC0 Mobile 60 ιι Ι ΠΔ Frequencies Enabled by Leakywave Antenna Beam Steering Jonas Tebart¹, Joel Dittmer², Thomas Haddad¹, Peng Lu¹, Sebastian Randel², Andreas Stöhr¹ ¹University of Duisburg-Essen, ²Karlsruhe Institute of Technology (KIT)

18:00

Design of Chip-to-Waveguide 18:20 Transition Centered at 220 GHz for sub-THz Packaging Haojie Chang¹, Zhongxia Simon He¹, Herbert Zirath¹


EuMC07-5

¹Chalmers University of Technology

EuMC08-5 Scalable Phased-Arrays at 140 GHz using RF and IF Beamforming Techniques

Amr Ahmed¹, Minjae Jung¹, Siwei Li¹, Linjie Li¹, Gabriel M. Rebeiz ¹University of California San Diego, USA

¹Chair of High Frequency Electronics, RWTH Aachen

Pattern Testing

¹NSI-MI Technologies

Patrick Pelland¹, Daniël Janse van Rensburg¹

Filter

Yong Zhang¹, Bo Zhang¹, Tianhao Cao¹, Huali Zhu¹

¹University of Electronic Science and Technology of China

PROGRAMME

WEDNESDAY 09:00 - 10:40

a 3/4	Beta 6		ROOM	Beta 7	Beta 8/9	
IC13 tive Manufacturing of owave Components Halti H. Sigmarsson' ir: Gerald Gold ² oma University, ² Friedrich-Alexan- iversität Erlangen-Nürnberg	EuMW06 Special Session MTT-S Inter- Society Technology Panel Session - Wireless Power Technologies Chairs: Vadim Issakov ¹ , David Zhizhang Chen ² , Jungchih Chiao ³ , Ke Wu ⁴ ¹ TU Braunschweig, ² Dalhousie Univ., ³ South. Methodist Univ., ⁴ Polyt. Montreal			EuMC14 Signal Integrity and EMC Chair: Christian Damm' Co-Chair: Bela Brian Szendrenyi ² 'Ulm University, ² Advantest America Inc.	EuMC15 High Efficiency Power Amplifier and Linearization Techniques Chair: Zoya Popovic' Co-Chair: Olof Bengtsson ² 'University of Colorado Boulder, 'Ferdinand-Braun-Institut, Leibniz- Institut für Höchstfrequenztechnik	
C 13-1 ve Integration with Aerosol- nted SIWs er Areias', Andrew Luce', Yuri Piro', Alkim y of Massachusetts Lowell	cal Consi Industry Panelists Dinech Kithar toh ² , Johnny Schulz ² , Johnny 'Wired and W	Power gies: Practi- iderations in	09:00 09:20	EuMC14-1 Tunable Dual-Frequency Interfer- ence Suppression Circuit with GaN MMIC Delay Lines Megan Robinson', Gregor Lasser ² , Zoya Popovic' 'University of Colorado at Boulder, ² Chalmers University of Technology, Sweden	EuMC15-1 Experimental Characterization of a Dual-Input OLMBA for Back-Off Efficiency Improvement Jean-Baptiste Urvoy', Roberto Quaglia', Jeff R. Powell ^e , Steve C. Cripos' 'Cardiff University, 'Skyarna Ltd.	
C13-2 rinted V-Band Twisted ithic Waveguide Bandpass ^{r'} , Daxin Wang', Peter Hunyor ² , Hui Wang ² , gard ² , Thomas Starke ³ , Qingfeng Zhang ⁴ , y of Birmingham, UK, ² STFC Rutherford Laboratory, ³ 30 Micro Print, ⁴ Southern Uni- Science and Technology, Shenzhen, China	Inst. Tech., Ja Technology, C gies, German	refsity, cullia, Kalazawa Jan, 'Chengdu Sprouting I,hina, 'Infineon Technolo- y, 'Xiaomi Technology, University, Japan	09:20 09:40	EuMC14-2 Linearity of PIN Diode Switch in Both ON-State and OFF-State Farhad Ghorbani', Jiafeng Zhou', Mattias Gustafsson', Yi Huang' 'University of Liverpool, 'University of Liverpool, 'R&D Center Huawei Technologies Sweden AB	EuMC15-2 A Wideband Dual-Input Reconfig- urable Doherty Power Amplifier for Mismatch Recovery Junfu Guo', Songbai He', Weimin Shi', Chuan Li', Xubin Zhang' 'University of Electronic Science & Technology of China, 'Chongqing University	
c 13-3 ass Filters in Standard Igular Waveguide Using 3D d Dielectric Inserts der' y of Pretoria			09:40 10:00	EuMC14-3 EMF-Measurements of Rooftop Attenuation of Cellular Radio Base Stations Deployed on Gable Roofs Roland Reese', Fabian Michler ² , Benedcit Scheiner ² , Eva Radermacher ¹ 'Deutsche Telekom Technik GmbH, ² Sykno GmbH	EuMC15-3 Dual-Band Pseudo-Doherty Load Modulated Balanced Amplifier Design by Exploiting the Periodic- ity of the Coupler Jieen Xie', Kwok-Keung Michael Cheng' 'The Chinese University of Hong Kong	
2 13-4 d 90° Waveguide Twists 3D Printing and PVD Metal- n Quint', Jerzy Kowalewski ² , Francesco Merli ² , wick' Institute of Technology (KIT), SUHNER AG			10:00 10 ⁻ 20	EuMC14-4 Exposure Simulation and Analysis using Downlink Beam Tracking of a Mobile User in City Scenario Xueyun Long', Mario Pauli', Yueheng Li', Oliver Fritz', Thomas Zwick' 'Karlsruhe Institute of Technology (KIT)/ Institute of Radio Frequency Engineering and Electronics (IHE), 'Karlsruhe Institute of Technology (KIT)	EuMC15-4 Efficiency Enhancement of Dual- PA transmitters Using Over-The- Air Combination Wenqi Wu' 'University of Electronic Science and Technology of China	
c 13-5 inted E-Band Waveguides e Impact of Surface Rough- ^{lofmann', Konstantin Lomakin', Micha ^{Tobias Bader', Mark Sippel', Gerald Gold'} Alexander Universität Erlangen-Nürnberg}			10:20 10:40	EuMC14-5 An Optically-Coupled Logger for the Measure of RF-Induced Volt- age on Pacemakers and ICDs Cecilia Vivarelli ¹ ¹ Italian National Institute of Health; University of Rome Tor Vergata	EuMC15-5 Comparison Between Latest Si-LDMOS and GaN Technology for RF-Power Base Station Transistors Daniel Maassen', Jan de Boet', Jos van der Zanden', Rob M. Heeres', Fred van Rijs'	

WEDNESDAY 09:00 - 10:40

ROOM	Alpha 5	Beta 2	Beta 3/4	Beta 6	
	EuMC11 Characterization of Multi- Antenna Systems	EuMC12 Non-Planar Filters Chair: Richard Snyder'	EuMC13 Additive Manufacturing of Microwave Components	EuMW06 Special Session Society Techno Session - Wirel Technologies Chairs: Vadim Issako Chen ² , Jungchih Chia ¹ TU Braunschweig, ² ² South. Methodist Ur	
	Chair: Ville Vikari ¹ Co-Chair: Matthias Geissler ² 'Aalto University, ² IMST GmbH	Co-Chair: Michael Höff ² ¹ RS Microwave, ² Christian-Albrechts- Universität zu Kiel	Chair: Hjalti H. Sigmarsson ¹ Co-Chair: Gerald Gold ² ¹ Oklahoma University, ² Friedrich-Alexan- der Universität Erlangen-Nürnberg		
09:00 09:20	EuMC11-1 Active Probe Array Structure for Assessment of mmWave Antenna	EuMC12-1 Evolution of high-power Filters for Space Applications	EuMC13-1 Additive Integration with Aerosol- Jet Printed SIWs	09:00 EuMW0 - Wireless 10:40 Technolo	
	Arrays Martin Obermaier', Martin Laabs', Thomas Deckert ² , Dirk Plettemeier' 'Technical University Dresden, ² NI	Christoph Schwager ¹ INDUSTRIAL KEYNOTE 'Tesat-Spacecom GmbH & Co. KG	Christopher Areias', Andrew Luce', Yuri Piro', Alkim Akyurtlu' 'University of Massachusetts Lowell	cal Consi Industry Panelists Dinesh Kithar toh', Johnny Schulz*, Jiang 'Wired and W	
09:20 09:40	EuMC11-2 An Experimental Study of Energy and Bit Efficiency in Collocated- and Distributed-MIMO using 28 GHz Testbed Tomoya Kaneko', Toshihide Kuwabara', Noriaki Tawa', Yasushi Maruta' 'NEC Corporation	EuMC12-2 Input-Abaorptive Quasi-Elliptic- Type Cavity Bandpass Filter Design YingQian He', Jing-Yu Lin [*] , Xuzhou Yu', Sai-Wai Wong' ' ¹ College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China, [*] Institute of Electromagnetics and Acoustics, Xiamen University, Xiamen, Fujian 361005, China	EuMC13-2 A 3D Printed V-Band Twisted Monolithic Waveguide Bandpass Filter Talal Skaik', Daxin Wang', Peter Hunyor', Hui Wang', Peter Huggard', Thomas Starke', Qingfeng Zhang', Yi Wang 'University of Birmingham, UK, 'STFC Rutherford Appleton Laboratory, '3D Micro Print, 'Southern Uni- versity of Science and Technology, Shenzhen, China	"Sichuan Uhin Inst. Tech., Ja Technology, C gies, German China, "Kyoto	
09:40 10:00	EuMC11-3 Passive Characterization of the Couplings within a Multi-Antenna System Through Noise Correlation meriem tamart', Elodie Richalot', Julien de Rosny ³ 'Université Gustave Eiffel, 'Gustave eiffel university, 'Institut Langevin, ESPCI Paris, CNRS	EuMC12-3 Reconfigurable Groove Gap Microwave Filter Based on Liquid Crystal Technology with One Transmission Zero Fynn Kamrath', Ersin Polat', Holger Maune', Rolf Jakoby', Michael Höft' 'Kiel University, 'Technische Universität Darmstadt, 'Otto-von-Guericke University Magdeburg	EuMC13-3 Low-Pass Filters in Standard Rectangular Waveguide Using 3D Printed Dielectric Inserts Tinus Stander' 'University of Pretoria		
10:00 10:20	EuMC11-4 Experimental Study of Channel Estimation and Transmit Diversity for IRS-based MISO system Yueheng Li', Sven Bettinga', Mohamad Basim Alabd', Xueyun Long', Lucas Giroto de Oliveira', Thomas Zwick' 'Karlsruhe Institute of Technology	EuMC12-4 A Novel Multi-Resonant Rectangular Waveguide Junction and Its Applications in Compact Waveguide Multi-Band Filters and Multiplexers Mohamed Fahmi', Jorge A. Ruiz-Cruz', Raafat R. Mansour' 'Defence R&D Canada - Ottawa, 'Universidy of Autónoma de Madrid, 'University of Waterloo	EuMC13-4 D-Band 90° Waveguide Twists using 3D Printing and PVD Metal- lization Alexander Quint', Jerzy Kowalewski ² , Francesco Merli ² , Thomas Zwick' ¹ Karlsruhe Institute of Technology (KIT), ² HUBER+SUHNER AG		
10:20 10:40	EuMC11-5 Robotic Measurement Solutions for Phased Array Calibration and Pattern Testing	EuMC12-5 Analysis and Validation of Fabrication and Assembly Effects on Terahertz Wayeguide Bandnass	EuMC13-5 SLS-Printed E-Band Waveguides and the Impact of Surface Rough- ness		

on Terahertz Waveguide Bandpass ness

Andreas Hofm Kleinlein¹, Tob ¹Friedrich-Ale

WEDNESDAY 10:40 - 13:00

ROOM Alpha 6

EuRAD01

EuRAD Opening Session

Chair: Christian Waldschmidt Co-Chair: Marlene Harter²

¹University of Ulm, ²Offenburg University of Applied Sciences

WEDNESDAY 09:00 - 10:40

09:00	Opening of the European Radar Conference 2023
09:10	Christian Waldschmidt, EuRAD Chair
	Marlene Harter, EuRAD TPC Chair

Phased Array Radar for an Era of Autonomy: Progress, 09:10 Challenges and Outlook 09:55 Tom Driscoll

Echodyne Corp., USA

The rapid increase in capability and prevalence of autonomous systems is driving demand for new and better sensors. Radar has always held a prestigious position among sensor suites as one of the only all-weather long-range modalities. However, the missions and environments for autonomous systems are now demanding higher performance than most traditional radars architectures can provide. Phased array radars - including MIMO phased arrays - are capable of the high performance required, but historically have been out of reach for all but the most exclusive systems due to their cost and complexity. This talk will outline the growing opportunity for next-generation radar sensors across multiple markets. We will look at major trends and progress advancing phased array technology, as well as examine key challenges and inevitable design tradeoffs. We'll end with an optimistic outlook for areas that seem poised for breakthrough and market success.

Secure - Fast - Convenient: UWB-based Real-time Walkthrough Passenger Screening

Matthias Gareis and Andreas Schiessl Rohde & Schwarz, Germany

09:55

10:40

Terrorist attacks on civil aviation starting early 2001 created an increased demand in security for people screening. The desire to detect non-metallic items like ceramic knifes or explosives drove the roll-out of millimeter-wave imaging based security scanners. As part of the introduction of the second generation body scanners, the Rohde&Schwarz®OPS201 lifted passenger screening to the next level.

The post-Covid recovery of air traffic paired with staff shortages created a strong need for higher efficiency, higher throughput and simplification of the screening process. Rohde & Schwarz' response to this is the new QPS Walk2000 security scanner based on the ultra-wideband (UWB) technology operating in the frequency range from 3.6 GHz to 10.6 GHz, which allows screening even through thick layers of clothing while the passengers walk through

UWB pulse generation in transmit and receive allows to produce a three-dimensional volume reconstruction in real-time. To reduce complexity and hardware cost, the receivers are using the sequential sampling radar technique. After the images of a person's passage through the scanner are reconstructed, the posture of the person is extracted from the images and threat objects are detected at all body regions using artificial intelligence (AI). The automatic threat detection results are then displayed on a neutral avatar to ensure privacy.

EuMC16	
EuMC Poster 1	
Chair: Amelie Hagelauer' 'TUM	
EuMC16-1 L-band Lithium Niobate-On-In- sulator SHO Resonators Avoiding Transverse Spurious Modes through Electrode Apodization Liuis Acosta', Eloi Guerrero', Carlos Caballero', Jordi Verdú', Albert Guerrero', Xavier Borrise', Jaume Esteve', Pedro de Paco' 'Universitat Autònoma de Barcelona, "Institut de Microelectrònica de Barcelona, "Institut de Manoscience and Nanotechnology (ICN2)	EuMC16-5 Lightweight, Low-Profile 3-Port Antenna Using Additive Manufa turing Process Adrien Coatanea', Nghia Nguyen-Trong', Christop Fumeaux', Benjamin Potelon', Christian Person' 'IMT Atlantique, ² The University of Adelaide
EuMC16-2 Pin-Loaded Rectangular Hollow- Waveguide Cavities for Filter Design with Excellent Suppres- sion of Spurious Passbands Jonas Weindl', Ananto Prasetiadi', Thomas F. Eibert ¹ ¹ Technical University of Munich, ³ Wainwright Instruments GmbH	EuMC16-6 Multi-Windows Spectral Trans- parency and Slow Light Effect Induced by Complex Near Field Mode Coupling in Microwave Metasurface Oleksiy Breslavets', Yuri Savin', Zoya Eremenko'' '0. Ya. Usikov Inst. for Radiophysics and Electr. of Ya. Usikov Inst. for Radiophysics and Electr. of Ya. Usikov Inst. for Radiophysics and Electr. of National Academy of Sciences of Ukraine, '0 Ya. Usikov Inst. for Radiophysics and Electr. of National Academy of Sciences of Ukraine, '0 Ya. Usikov Inst. for Radiophysics and Electr. of the National Academy of Sciences of Ukraine, Leibni Institute for Solid State and Materials Research
EuMC16-3 Inline Waveguide Filter with Compact Frequency-Dependent Coupling Producing Two Addi- tional Poles and Three Transmis- sion Zeros Muhammad Sandhu', Umar Abdul Majeed', Adam Lamecki', Roberto G'omez-Garc'a', Michal Mrozowski' 'Sukkur IBA University, 'Gdansk University of Technology, 'University of Alcala	EuMC16-7 FDTD Analysis of Space-Time Metamaterials using Modulated TVTLs for Frequency Translatio Mixing and Non-reciprocity Anand Kumar', Debdeep Sarkar ^a 'Indian Institute of Science, ¹ Indian Institute of Science, Bangalore
EuMC16-4 Suspended CPW Integration on Nanoporous Alumina Interposer for Millimeter Wave Application	EuMC16-8 Resonant Response in Tunable Metasurface Based on Crossed All-Dielectric Grating


for Millimeter Wave Application Gustavo Palomino', Gustavo Pamplona Rehder', Ariana Lacorte Caniato Serrano', Gustavo Marcati', Gabriel Griep'

le ed All-Dielectric Grating Vladimir Yachin¹

¹Institute of Radio Astronomy

¹Universidade de Sao Paulo

ROOM

11:20

11:40

11:40

12:00

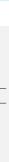
12:00

12:20

12:20

12:40

12:40


13:00

WEDNESDAY 11:20 - 13:00

PROGRAMME

WEDNESDAY 11:20 - 13:00

Alpha 5	Beta 2	Beta 3/4	Beta 6	ROOM	Beta 7	Beta 8/9
EuRADO2 mm-Wave Antennas for Radar Applications Chair: Hasan Iqbal' Co-Chair: Jerzy Kowalewski ² 'Continental AG, ² Huber+Suhner	EuMC17 Passive Components Chair: Maurizio Bozzi ¹ Co-Chair: Anthony Ghiotto ² 'University of Pavia, ² University of Bordeaux	EuMC/EuRADO1 Waveforms for Distributed Networks and Integrated Communications and Sensing Chair: Thomas Dallmann' Co-Chair: Maria Sabrina Greco ² 'Technische Universität Ilmenau, ² University of Pisa	EuRADO3 Radar Target Measurement and Detection Chair: Michael Antoniou' Co-Chair: Yoke Leen Sit ² 'Univerisity of Birmingham, ² Valeo Schalter und Sensoren GmbH		EuMC18 Microwave Components for Space Applications Chair: Michael Kilian' Co-Chair: Alexander Kölpin ² 'Airbus Defence & Space, ² Hamburg University of Technology	EuMC19 High Power Device and Amplifier Technology Chair: José Carlos Pedro' Co-Chair: Gavin Watkins ² 'Universidade de Aveiro - IT, ² Toshiba Europe Limited
EuRADO2-1 3D Metallized Polymer Waveguide Antennas for Radar Systems – from mmW to sub-THz Jerzy Kowalewski', Alejandro Garcia Tejero', Marco Rossi', Francesco Merli' INDUSTRIAL KEYNOTE 'Huber+Suhner	EuMC17-1 Design of a Low-Loss E-Band Self-Biased Waveguide Circulator for Space Applications Evan Roue ⁷ , Vincent Laur', Alexis Chevalier', Antoine Hoez', Gérard Tanné ¹ , Olivier Vendier ² , Rose-Marie Sauvage ¹ , Richard Lebourgeois ⁴ 'Univ Brest, Lab-STICC, CNRS, UMR 6285, ² Thales Alenia Space, ² Agence de l'innovation de défense, ⁴ Thales research and technology	EuMC/EuRADO1-1 A Dual-Carrier Linear-Frequency Modulated Waveform for High-Accuracy Localization in Distributed Antenna Arrays Ahona Bhattacharyya', Jason Merlo', Jeffrey A. Nanzer' 'Michigan State University	EuRADO3-1 Statistical Polarimetric RCS Model of an Asphalt Road Surface for mm-Wave Automotive Radar Wietse Bouwmeester', Francesco Fioranelli', Alexander Yarovoy' 'TU Delft	11:20 11:40	EuMC18-1 Tackling the Challenges of Over- The-Air Testing for New Space Benoit Derat' INDUSTRIAL KEYNOTE 'Rohde & Schwarz GmbH & Co. KG	EuMC19-1 A Low Loss, 6 GHz Large-Signal Bandwidth Analog Pre-Distortion Linearizer for K-Band High Power Amplifiers Tonmaso Cappello', Sarmad Ozan', Laura McDonald', Andrew Tucker', Peter Krier', Tudor Williams', Kevin Morris ^a
EuRADO2-2 3D Mold Embedded PCB-Based MIMO Antenna Arrays for 79 GHz Automotive RADAR Thi Huyen Le' 'Fraunhofer Institute for Reliability and Microinte- gration (IZM)	EuMC17-2 A Novel Compact Six-Pole Filter- ing Gysel Combiner Mohamed Fahmi', Jorge A. Ruiz-Cruz ² , Raafat R. Mansour ³ ¹ Defence R&D Canada - Ottawa, "Universidad Autónoma de Madrid, "University of Waterloo	EuMC/EuRAD01-2 Optimized Window Function for Improved Estimation Capabilities in 5G Joint Communication and Sensing Michael Hofstadler', Maximilian Larcher', Reinhard Feger', Andreas Springer', Andreas Stelzer' 'Johannes Kepler University Linz	EuRADO3-2 Radar Cross-Section Pattern Measurement of a Complex Target in Reverberation Chamber Corentin Charlo', Stéphane Méric', François Sarrazin', Jérome Sol', Philippe Pouliguen', Elodie Richalot', Philippe Besnier' 'IETR UMR6164, INSA Rennes, 'Defense Innovation Agency, French Ministry of Armed Forces, 'Univ. Gustave Eiffel, ESYCOM	11:40 12:00	EuMC18-2 Helically Corrugated Interaction Regions for W-Band Gyrotron- Traveling Wave Amplifiers Craig Donaldson', Liang Zhang', Craig Robertson', Philip MacInnes', Colin Whyte' 'University of Strathclyde	EuMC19-2 A 100 V, 90 W, 50 % Efficiency Distributed Amplifier John Walker', Gabriele Formicone', William Veitschegger ¹ 'Integra Technologies, Inc.
EuRADO2-3 Microstrip-Line Type Bruce Array Antenna with Low Sidelobe Level for Millimeter-Wave Radar Hyunyoung Cho', Chanhee Lee', Jeong-Wook Kim', Sol Kim', Jong-Won Yu' 'Korea Advanced Institute of Science and Technology	EuMC17-3 Comparison of Compact Liquid Crystal-based Phase Shifting Topologies for Reconfigurable Intelligent Surfaces Robin Neuder', Tom Burmeister', Dongwei Wang', Schüßler Martin', Rolf Jakoby', Alejandro Jiménez- Sáez'	EuMC/EuRADO1-3 Design of Long-Sequence Unimodular Waveforms Using an Original Autoencoder for MIMO Radar Systems Ryota Sekiya', Hiroki Mori', Hiromi Hashimoto ² , Junichiro Suzuki ² ¹ Research and Development Center, Toshiba Corpora- tion, "Toshiba Infrastructure Systems & Solutions Corporation	EuRADO3-3 Numerical Synthesis of Radar Target Detections Based on Measured Reference Data Philip Aust', Florian Hau', Jürgen Dickmann', Matthias A Hein' 'Mercedes-Benz AG, 'Technische Universität Ilmenau	12:00 12:20	EuMC18-3 Measurement and Analysis of FDM for E-Band Satellite Com- munication Simon Haussmann', Laura Manoliu', Lukas Gebert', Benjamin Schoch', Markus Koller', Jakob Meier', Fabian Steinnetz', Jens Freese', Raf Henneberger', Axel Tessmann', Sabine Klinkner', Ingmar Kallfass' 'University of Stuttgart, 'University of Stuttgart, 'Thales Alenia Space, 'Tesat Spacecom GmbH & Co. KG, 'Radiometer Physics GmbH, 'Fraunhofer IAF, Fraunhofer Institute for Applied Solid State Physics	EuMC19-3 A 4 kW, 100 V GaN on SiC HEMT Transistor for 1.3 GHz Particle Accelerator Applications John Walker', James Custer', Gabriele Formicone' 'Integra Technologies, Inc.
EuRADO2-4 Double-Slot Waveguide Array with Tilted Wide-Angle Beam for Corner Automotive Radar Yunsu Kang' 'HL Klemove	EuMC17-4 AFSIW E-plane Bifurcation for Compact High-performance Systems on Substrate and its Demonstration in the Design of a Dual-Band Filter Maxime Le Gall', Anthony Ghiotto ² , Issam Marah ³ [*] Exens-solutions/Bordeaux INP, IMS Laboratory, [*] Bordeaux INP, IMS Laboratory, *Exens-solutions	EuMC/EuRAD01-4 Distributed Sensor Network for 3D Tag Localization Using Harmonic Radar at 61/122 GHz ISM Band Steffen Hansen', Sandra Nowok', Alex Shoykhetbrod', Stefan Thomas Wickmann', Jan Wessel', Nils Pohl' 'Fraunhofer FHR (Fraunhofer Institute for High Frequency Physics and Radar Techniques FHR), 'Ruhr-University Bochum	EuRADO3-4 FMCW Radar Height Estimation of Moving Vehicles by Analyzing Multipath Reflections Sören Kohnert', Michael Vogt', Reinhard Stolle' 'Augsburg Technical University of Applied Sciences, 'Ruhr University Bochum	12:20 12:40	EuMC18-4 Frequency and Phase Investiga- tion of the Local Oscillator Offset in a W-Band Satellite Communica- tion Link Laura Manoliu', Dominik Wrana', Benjamin Schoch', Simon Haussmann', Axel Tessmann', Ingmar Kallfass' 'Institute of Robust Power Semiconductor Systems (LH) - University of Stuttgart, 'Fraunhofer IAF, Fraunhofer Institute for Applied Solid State Physics	EuMC19-4 Balanced Amplifier Design for Improvement of Reverse Inter- modulation Distortion in Wireless Microphone Systems Sven Hampel', Christian Krüger', Timo Jeske' 'Sennheiser electronic GmbH & Co. KG
EuRADO2-5 Wideband Corrugated Horn Antenna for Cross- Polarization Jamming Applications at Ka-Band Göksenin Bozdağ', Mustafa Kuloğlu', Burak Eser' 'Aselsan Inc.	EuMC17-5 Structured-Glass Waveguides (SGW) and TRL Calibration Standards Chad Bartlett', Antonio Malavé', Martin Letz ² , Michael Höft' 'Kiel University, ² SCHOTT AG	EuMC/EuRAD01-5 CP-DSSS for Radar-Centric Integrated Sensing and Com- munication Linda Gehre', Lucas Giroto de Oliveira', Axel Diewald', Thomas Zwick', Benjamin Nuss' 'Karlsruhe Institute of Technology (KIT)	EuRAD03-5 Design and Measurements of MIMO Radar Arrays for Autono- mous Vehicles Ofer Markish' 'Mobileye, Israel	12:40 13:00	EuMC18-5 A Heterodyne Transceiver for Hybrid-Integrated K-/Ka-Band Phased Arrays Kevin Erkelenz', Florian Goeppert', Noah Sielck', Alexander Kölpin', Arne F. Jacob' 'Hamburg University of Technology	EuMC19-5 HF Class-E Power Amplifier with Improved Efficiency for Mismatched Loads Frederick Raab' 'Green Mountain Radio Research

istortion gh Power

Processing

EuRAD04-1

EuRAD04-2

¹University of Ulm

EuRAD04-3

Radar Sensors

Christian Waldschmidt¹

¹University of Ulm

Murtaza Ali

14:20

14:40

14:40

15:00

15:00

15:20

15:20

15:40

Chair: Marlene Harter¹

ences. ²University of Ulm

INDUSTRIAL KEYNOTE

Generation of 3D Grid-Maps Using

Sensors with 1D Angle Estimation

an Incoherent Network of Radar

Timo Grebner¹, Thomas Weichenmeier¹, Vinzenz Janoudi¹, Pirmin Schöder¹, Christian Waldschmidt

Detection and Backprojection of

Ghost Targets within a Network of

Timo Grebner¹, Fabian Konrad¹, Schwarz Dominik¹,

PROGRAMME

WEDNESDAY 14:20 - 16:00

ROOM	Beta 6	Beta 7	Beta 8/9		
	EuMC/EuRAD03 Antenna Techniques for Radar	EuMC22 Medical Microwave Applica- tions and Dosimetric Studies	EuMC23 Advanced THz device and photonic techniques		
	Chair: Pierfrancesco Lombardo' Co-Chair: Alexander Yarovoy² 'Sapienza University of Rome, ² Delft University of Technology	Chair: Jan Vrba' Co-Chair: Christian Damm ² ¹ Czech Technical University in Prague, ² Ulm University	Chair: Christian Carlowitz' Co-Chair: Guillaume Ducournau ² ¹ FAU Erlangen-Nürnberg, ² University of Lille		
14:20 EuMC/EuRADO3-1 14:40 Sparse 2D MIMO Antenna Designs using Simulated Annealing Muge Bekar', Christopher John Baker', Marina Gashinova' Muge Bekar', Christopher John Baker', Marina Gashinova'		EuMC22-1 Characterization of the Influence of Clothing and Other Materials on Human Vital Sign Sensing using mmWave Radar Nils C. Albrecht', Jan P. Weiland', Dominik Langer', Marvin Wenzel', Alexander Kölpin' 'Hamburg University of Technology (TUHH)	EuMC23-1 Sub-THz Silicon-Micromachined Reconfigurable Beam-Steering Frontend Armin Karimi', Umer Shah', Joachim Oberhammer' 'KTH Royal Institute of Technology		
14:40 15:00	EuMC/EuRADO3-2 Reconstructed 2D MIMO Using Burg Algorithm Muge Bekar', Christopher John Baker', Marina Gashinova' 'University of Birmingham, UK	EuMC22-2 A High-Stability and High-Sensitiv- ity Active Sensor for Non-Invasive Breast Cancer Detection Sandra Santiago-Mesas', Elizabeth Fernandez-Aranza- mend', Daniel Seoura-Vargas', Adrian Amor-Martin', Vicente González-Posadas'	EuMC23-2 Compact High-Isolation Sub-THz Micro-Electromechanical SPST Switch Armin Karimi', Umer Shah', Joachim Oberhammer' 'KTH Royal Institute of Technology		
15:00 15:20	EuMC/EuRADO3-3 Monopulse Channels Beamform- ing with Overlapped Subarrays for Low-Cost Multi-Mission Radars Giulio Giovannetti' 'ELDES srl	EuMC22-3 Using Effective Medium Theory to Simulate Skin Cancer Detection with a Substrate-Integrated- Waveguide-Probe Nicolas Treier', Benedicta Fofo Doku', Denis Jaisson', Serdal Ayhan', Herman Jali Ng', Marlene Harter' 'Hochschule Offenburg, 'Hochschule Karlsruhe	EuMC23-3 Comparison of the Performance of State-of-the-Art Photoconductive Receivers for Terahertz Photonic Spectrum Analysers Benedikt Krause', Sascha Preu' 'Technical University of Darmstadt, Darmstadt		
15:20 15:40	EuMC/EuRADO3-4 Avoidance of Near-Field Influ- ences in Calibration Measure- ments of Radars by Means of Active Calibration Targets Matthias Linder', Benedikt Meinecke', Dominik Schwarz', Christian Waldschmidt' 'Ulm University, Germany	EuMC22-4 Microwave Diagnosis of Bone Fractures: an Artificial Intelli- gence-Based Approach Fardin Ghorbani', Sina Beyraghi', Javad Shabanpour', Mir Emad Lajevardi', Vahid Nayyeri', Pai-Yen Chen', Omar M. Ramahi' ''Iran University of Science and Technology, ² Pompeu Fabra University of Science and Technology, ² Pompeu Fabra University, Sudh Tehran Branch, ² The University of University, South Tehran Branch, ² The University of Ulinois Chicago, ⁹ University of Waterloo	EuMC23-4 Ultra-stable tunable THz system for 6G communication based on photonics Taro Eichler', Wilhelm Keusgen', Rafal Wilk ¹ , Thomas Puppe' ¹ Rohde & Schwarz GmbH & Co. KG, ² TU Berlin, ² TOPTICA Photonics		
15:40 16:00	EuMC/EuRADO3-5 Beam Space MIMO Radar Using Butler Matrices for Transmit and Receive Beamforming Reinhard Feger', Christoph Dutzler', Andreas Stelzer' 'Johannes Kepler University Linz	EuMC22-5 Auto-Induced, Radiofrequency, Downlink Exposure Focused at the Human Ear Hanne Herssens', Arno Thielens' 'Ghent University-imec	EuMC23-5 Photonics Assisted Analog-to- Digital Conversion of Wide- Bandwidth Signals by Orthogonal Sampling Yourus Mandalawi', Janosch Meier', Mohamed I. Hosni', Kararveer Singh', Souvaraj De', Evans Baidoo		

WEDNESDAY 14:20 - 16:00 ROOM Alpha 5 Beta 2 Beta 3/4 EuMC20 EuMC/EuRAD02 EuRAD04

Automotive Radar Signal Filters by Additive Manufacturing Chair: Cristiano Tomassoni¹ Co-Chair: Christian Waldschmidt² Co-Chair: Adam Lamecki² ¹Offenburg University Of Applied Sci-¹University of Perugia, ²Gdansk Univer sity of Technology

EuMC20-1 DCM Radar: Advantages. Chal-Additive-manufactured TM018 lenges and Future Evolutions Mode Dielectric Resonators for

Compact On-Board Wideband Filters Paolo Vallerotonda¹, Luca Pelliccia¹, Fabrizio Cacciamani¹, Cristiano Tomassoni², Oilid Bouzekri 1RF Microtech Srl, 2University of Perugia, 3ESA /

BST-Based Tunable Helical Filter

Operating in the Higher Order

Seyyed Mojtaba Pourjaafari¹, Raafat R. Mansour¹

ing TM and TE Mode Operation

¹ Christian-Albrechts-Universität zu Kiel, ²Lithoz

Rectangular Waveguide Filters

Patrick Boe¹, Daniel Miek¹, Dominik Brouczek²

EuMC20-2

¹University of Waterloo

EuMC20-3

Michael Höft¹

Mode

EuMC/EuRAD02-2 6G Integrated Sensing and Communication: From Vision to Realization Thorsten Wild¹, Artjom Grudnitsky¹, Silvio Mandelli¹, Marcus Henninger¹, Junqing Guan¹, Frank Schaich¹ ¹Nokia

Focused Session

Chair: Reiner S. Thomä¹

Co-Chair: Thomas Dallmann¹

EuMC/EuRAD02-1

Reiner S. Thomä¹, Thomas Dallmann¹ Technische Universität Ilmenau

Distributed ISAC Systems -

Multisensor Radio Access and

¹Technische Universität Ilmenau

6G Part 1

Coordination

Joint Communication and Ra-

dar Sensing - A Step Towards

EuMC21-2 Metamaterial Waveguide Based Detector for Mass-Flow Measure-

Beta 5

EuMC21

Chair: Pierre Blondy¹

Co-Chair: Ferran Martín²

urfaces

Barcelona

EuMC21-1

Metamaterials and Metas-

¹Xlim - UMR 7252 - CNRS- Limoges

University, ²Universitat Autònoma de

A Stacked Transparent Metas-

urface for Wideband LP-to-CP

Conversion and Phase Control

Guowei Li¹, Yuehe Ge¹, Zhizhang Chen²

¹Fuzhou University, ²Dalhousie University

ments of Particulate Paint Solids Amrit Zoad¹, Alexander Kölpin², Andreas Penirschke³ ¹Technische Hochschule Mittelhessen, ²Hamburg University of Technology (TUHH), Hamburg, Germany, ³ Technische Hochschule Mittelhessen

Radome using Diodes at 3.6 GHz Thi-Hong-Le Dam¹, Alejandro Niembro-Martin², Thierry Lacrevaz¹, Gregory Houzet¹, Damien Paulet³, Nadège Reverdy-Bruas⁴, Quoc-Bao Duong⁵, Tan-Phu Vuong¹ ¹Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, IMEP-LAHC, ²Schneider Electric, ³Univ. Grenoble Alpes, CNRS, Grenoble INP, IUT1, ⁴Univ. Grenoble Alpes, CNRS, Grenoble INP, LGP2, ⁵Univ. Grenoble Alpes. S.mart Grenoble Alpes

EuMC21-4 Glide-Symmetric Reconfigurable

Metasurface in Substrate-Integrated-Waveguide Technology Boris Fischer¹, Julien Sarrazin¹, Guido Valerio¹

¹Sorbonne Université

tive Permeability Metamaterial Cell with Self-Coupling Compensa-

Hongtao Zhong¹, David Ricketts¹

EuRAD04-4 Analyzing the Movement of Motorcyclist's Extremities based on its Angular Resolved RCS Measurement Sevda Abadpour¹, Christian Schyr², Mario Pauli¹ Florian Klein³, Rene Degen⁴, Jan Siska⁵, Nils Pohl⁵, Thomas Zwick¹

¹Karlsruhe Institute of Technology (KIT), ²AVL Deutschland, ³HHVISION, ⁴ Cologne University of Applied Sciences, ⁵Ruhr-University Bochum

15:40

EuRAD04-5 Joint Angle and Velocity Estima-16:00 tion in an Extended Velocity Unambiguity for TDM MIMO Radars

Robert Prophet¹, Tobias Schmid¹, Benedikt Lösch¹ ¹Robert Bosch GmbH

Based on Deformed Dual-Mode Cavity Resonators Lamecki¹, Michal Mrozowski

EuMC20-4

Michal Baranowski¹, Łukasz Balewski², Adam ¹Gdansk University of Technology, ²EM Invent Ltd

EuMC20-5 A 3-D-Printing-Compatible 90°-Bending and Polarization-**Rotated Waveguide Filter Based** on Capsule-Shape Resonators and Spherical Joints Yuhong Ye1, Jin Li1, Sicheng Chen1, Tao Yuan1 ¹Shenzhen University

EuMC/EuRAD02-5 A Compact Reconfigurable Power Splitter Enabling a Full-Duplex Integrated Transceiver Employed for Joint Communication and Radar Sensing Farhad Bozorgi¹, Padmanava Sen ¹Barkhausen Institut gGmbH

EuMC21-5 14dB Active Gain Magnetic Nega-

tion ¹North Carolina State University

EuMC/EuRAD02-3 Bandpass Filter Based on **3D-Printed Ceramic Triple-Mode** Resonator with Branches Combin-

Bistatic OFDM-based Joint Radar-Communication: Synchronization, Data Communication and Sensing Lucas Giroto de Oliveira', David Brunner', Axel Die-wald', Charlotte Muth', Laurent Schmalen', Thomas Zwick¹, Benjamin Nuss¹ ¹Karlsruhe Institute of Technology (KIT)

EuMC/EuRAD02-4

Thomas Dallmann¹, Reiner S, Thomä¹

¹Technische Universität Ilmenau

Wave Signals

Mutual Over-The-Air Frequency

Synchronization of Continuous

EuMC21-3 Switchable FSS-based 3D Printed

toogonal

-THz PST

WEDNESDAY 16:00 - 18:20

WEDNESDAY 16:40 - 18:20

Exhibition Hall EuMC24 EuMC Poster 2 Chair: Amelie Hagelauer' 'TUM		Poster presenters will be ready around their stands by 16:00.	ROOM	Alpha 5 EuRADO5 High-Resolution Radar and Imaging Chair: Michael Antoniou' Co-Chair: Jacco de Wit ² 'Univerisity of Birmingham, ² TNO	Beta 2 EuMC25 Beamsteering Arrays and Reconfigurable Intelligent Surfaces Chair: Stefania Monni' Co-Chair: Simona Bruni ² 'TNO Defense, Security and Safety, 'IMST GmbH
EuMC24-1 Experimental Demonstration of a High Capacity THz-Wireless P2MP Transmission System Diver Stiewe', Robert Elschner', Thomas Merkle', Kallyan Das', Stefan Weide', Colja Schubert', Ronald Freund' ''Fraunhofer Heinrich Hertz Institute, [?] Fraunhofer Institute for Applied Solid State Physics (IAF)	EuMC24-5 Cylindrical Luneburg Lens Equipped with Conformal Graphene Strip as Efficient THz Absorber Iryna Mikhailikova', Sergii Dukhopelnykov' 'V. N. Karazin Kharkiv National University	EuMC24-9 Evaluation of a Ku-Band Phased Array Performances with Cosimu- lation Including Measurements Huan Nguyen', Julien Lintignat', Cyrille Menudier', Clement Hallepee', Marc Thévenot' 'XLIM - University of Limoges	16:40 17:00	EuRADO5-1 Innovations in Modulation and Processing for Perception Radar: Improving Interference Mitigation and Enabling High-Resolution Imaging Neam Arkind' INDUSTRIAL KEYNOTE 'Arbe	EuMC25-1 Modeling Integrated Antennas and Unisolated High-Power Ampli- fiers in Infinite Scanning Arrays Martin de Kok', Stefania Monni [*] , Marc van Heijningen [*] , Alessandro Gardro [*] , Peter de Hek [*] , Bart Smolders ¹ , Ulf Johannsen ¹ ¹ Eindhoven University of Technology, [*] TNO Defense, Safety and Security
EuMC24-2 On Solving Higher Order Volume- Surface Integral Equations for Composite Conductor and Anisotropic Media Structures Zhi-peng Zhang', Qiang-Ming Cai [*] , Yong Li [*]	EuMC24-6 Numerical Modeling and Simula- tion of Large Transmitarrays Antennas for X and Ka Band Applications Alessandro Henrique De Oliveira Cabral Junior',	EuMC24-10 Mobile Robots Design for Industrial Applications in Private 5G Networks: Essential Factors to Consider Ying Rao Wei', Jayabalaji Sathiyamoorthi', Mahib	17:00 17:20	EuRAD05-2 Nearfield Multiple-Input Multiple- Output Inverse Synthetic Aper- ture Radar for High-Resolution Imaging of Large Objects Marius Brinkmann', Gerhard F. Hamberger', Thomas F. Eibert' 'Rohde & Schwarz GmbH & Co. KG, 'Technical University of Munich	EuMC25-2 An Al-Based Model for Smart Control of High-Mobility Phased Arrays Arman Bordbar', Luigi Boccia', Luca Catarinucci ² , Giandomenico Amendola', Riccardo Colella' 'University of Calabria, ² University of Salento
Tyun Micro Electronics Co.,Ltd, 'Southwest University of Science and Technology, 'Yun Micro Electronics Co.,Ltd EuMC24-3 Extracting Curvature Informa- tion From Low Fidelity Mesh for Electromagnetic Ray-Tracing	André Barka [*] , Hamza Kaouach [*] ¹ ONERA & Laplace Laboratory, ² ONERA, ¹ LAPLACE, ¹ Université de Toulouse, CNRS EuMC24-7 Determination of Manufacturing Tolerances using Uncertainty Ouantification for the Realization	EuMC24-11 Compact Millimeter-Wave Filtenna Fed by SIW with BC-CSRRs for Optimal Suppression	17:20 17:40	EuRAD05-3 Investigation on Internal Wall Defects of Pipes Using FMCW Radar Imaging Methods Irvin Barengolts', Jochen Altholz', Robin Julian Schmitz', Ilona Rolfes', Jan Barowski' 'Ruhr University Bochum	EuMC25-3 Approximating the Performance of a 28 GHz Corrugated Horn Antenna with an 8x8 Time- Modulated Array Ricardo A. M. Pereira', Enrico Fazzini', Alessandra Costarzo', Diego Masotti', Nuno Borges Carvalho' 'Instituto de Telecomunicaces - Universidade de Aveiro, 'DEI "Guglielmo Marconi', University of Bologna
Simulations in Automotive Scenarios Mohannad Saifo', Alexander loffe ² , Cai Xiuzhang ³ , Markus Stefer ² , Markus Clemens ¹ ¹ Bergische Universität Wuppertal, ¹ APTIV services deutschland GmbH, ³ APTIV Services US LLC, USA	of a Dual Circularly Polarized Elliptical Feed Horn Mustafa Murat Bilgic', Peter Meincke', Tonny Rubæk' 'TICRA	Yiqiu Liang', Liyu Zhu', Zhiqiang Yu', Jianyi Zhou' 'Southeast University	17:40 18:00	EuRAD05 Microwave Radar Imaging System for Industrial Applications Mark Eberspächer' INDUSTRIAL KEYNOTE 'Balluff GmbH	EuMC25-4 Nonlinear Modelling of Steerable Antenna Array by Ferroelectric Capacitors Based on Nanoscale Layers of HfZrO Simone Trovarello', Alessandra Di Florio Di Renzo', Martino Aldrigo', Diego Masotti', Mircea Dragoman', Alessandra Costanzo' 'University of Bologna, 'National Institute for Research and Development in Microtechnologies - IMT Bucharest
Switched-Mode Power Supply Impact on a Bluetooth Low Energy Receiver Inside a Micro- controller Pierre Malbec', Jean-Daniel Arnould', Christian Vol- laire', Jean-Marc Duchamp', David Chesneau' 'Univ, Grenoble Alpes, TIMA, 'Univ, Lyon, Laboratoire Ampère, 'Univ. Grenoble Alpes, G2ELab, 'STMicroelectronics	Orthogonal Linear Polarization Dependent Bifunctional Meta- Mirror / Meta-Lens Antenna for Millimeter-Wave Applications Suchitra Tiwari', Amit Kumar Singh', Ankit Dubey' 'INDIAN INSTITUTE OF TECHNOLOGY JAMMU, 'Indian Institute of Technology Patna		18:00 18:20	EuRAD05-5 An Adaptive Threshold-Based Unambiguous Robust Doppler Beam Sharpening Algorithm for Forward-Looking MIMO Radar sen yuan', Francesco Fioranelli', Alexander Yarovoy' 'TU Delft	EuMC25-5 A Miniaturized 1-bit Refective Unit Cell for Reconfigurable Intel- ligent Surface Jiexi Yin', Yueheng Li', Thomas Zwick' 'Karlsruhe Institute of Technology (KITI)/ Institute of Radio Frequency Engineering and Electronics (IHE)

Beta 3/4

EuMC/EuRAD04

Focused Session Joint Communication and Radar Sensing - A Step Towards 6G Part 2

Chair: Aydin Sezgin¹ Co-Chair: Reiner S. Thomä² ¹Ruhr-Universität Bochum, ²Technische Universität Ilmenau

EuMC/EuRAD04-1 Map Fusion and Heterogeneous li- Objects Tracking in Joint Sensing and Communication Networks

Elia Favarelli', Elisabetta Matricardi', Lorenzo Pucci', Enrico Paolini¹, Wen Xu², Andrea Giorgetti¹ ¹University of Bologna, ²Huawei Technologies Ise, Duesseldorf GmbH

EuMC/EuRAD04-2 Reinforcement Learning for Cognitive Integrated Communication and Sensing Systems

Aya Ahmed¹, Leila gharsalli², Stefano Fortunati³, Aydin Sezgin¹

¹Ruhr-Universität Bochum, ²Polytechnic Institute of Advanced Science (IPSA), ³CNRS, Univ. Paris-Sud

EuMC/EuRAD04-3 Impact of Blockage on the Sensing Performance Using Distributed MIMO Architecture

Adham Sakhnini', Mamoun Guenach², André Bourdoux², Sofie Pollin' ¹IMEC and KU Leuven, ²imec

EuMC/EuRAD04-4 Radar-Sensing Based on Non-Contiguous OFDM Signals Using **Compressed Sensing** Andreas Bathelt¹, Ruben Thill¹

¹Fraunhofer FHR (Fraunhofer Institute for High Frequency Physics and Radar Techniques FHR)

EuMC/EuRAD04-5 Radar Waveform Design for Sensing and Communications Coexistence

Robin Amar', Ehsan Raei', Mohammad Alaee-Kerahroodi', Bhavani Shankar M.R.' ¹SnT

Beta 5

EuMC26 Field Theory and Numerical Techniques

Chair: Alessandro Galli¹

Co-Chair: Christian Damm² 'Sapienza University of Rome, ²Ulm University

EuMC26-1

A Fast Physical Optics Framework for Optimizing Quasi Optical Millimeter Wave Measurement Setups

Tobias Körner', Jochen Altholz', Steffen Gerling', Jan Barowski', Christian Schulz', Ilona Rolfes' ¹Ruhr University Bochum

EuMC26-2 Efficient Antenna Pattern Sampling using Complex Source Beams for Millimeter Wave Short **Range Scenarios**

Steffen Gerling¹, Tobias Körner², Christian Schulz³, Jan Barowski³, Ilona Rolfes³

¹Ruhr-University Bochum, Germany, ²Ruhr University Bochum, ³Ruhr-University Bochum

EuMC26-3 An Efficient WLP-Based Method with Operator Splitting Technique for Solving Wave Equation

Jie Li¹, Min Tang¹, Junfa Mao¹ ¹Shanghai Jiao Tong University

EuMC26-4

Diffraction Radiation Analysis of Finite Graphene-Covered Nanowire Grating Excited by Electron Beam

Darija Herasymova¹

¹Institute of Radio-Physics and Electronics NASU

EuMC26-5

Emission Frequencies and Thresholds for Microsize Graphene Strip Grating Laser on Gain Substrate

Fedir Yevtushenko¹, Sergii Dukhopelnykov² ¹Institute of Radio-Physics and Electronics NASU, ²Institute of Radio-Physics and Electronics NASU

THURSDAY 09:00 - 10:40

Beta 6	Beta 7	Beta 8/9
_	EuMC27 Microwave Sensing Techniques for Biological Materials Chair: Katia Grenier' Co-Chair: Michal Cifra ² 'LAAS-CNRS, ² Institute of Photonics and Electronics, Czech Academy of Sciences	EuMC28 Material and Waveguide Measurement Chair: Ilona Piekarz' Co-Chair: Georg Gramse ² 'AGH University of Science and Technol- ogy, ² Keysight Labs
enna f- e	EuMC27-1 Broadband Analysis of Sample Permittivity on a Conductor- Backed Coplanar Waveguide Petr Kürka', Jaroslav Havliček', Daniel Havelka', Michal Cifra' 'Institute of Photonics and Electronics of the Czech Academy of Sciences	EuMC28-1 Complex Permittivity Extrac- tion of IC-Package Materials beyond 110 GHz by Band-Limited Waveguide-Cavity Measurements Tim Pfahler', Gerald Gold', Felix Bachbauer', Jan Schür', Martin Vossiek' 'Friedrich-Alexander Universität Erlangen-Nürnberg
mercial ircuit Ap- almann², aunhofer ency Phys-	EuMC27-2 Tapered CPW Transmission Line for Enlarging Dynamic Range of Dielectric Spectroscopy Marie Mertens', Raphaël Trouillon', Ke Wu', Bart Nau- welaers', Tomislav Markovic', Dominique Schreurs' 'KU Leuven, 'Polytechnique Montreal, 'University of Zagreb	EuMC28-2 An Open Hemispherical Resonant Cavity for Relative Permittivity Measurements of Fluid and Solid Materials at mm-Wave Frequen- cies Gabriele Federico', Diego Caratelli ⁷ , Bart Smolders ³ , Ad Reniers ³
inic tem rray scal rz²,	EuMC27-3 Fully 3D-printed Microfluidic Substrate Integrated Waveguide based Sensor for in Vitro Diagnos- tics of Diabetes Abdelhak Hamid Allah', Guy Ayissi Eyebe', Frederic Domingue' 'Université du Québec à Trois-Rivières	Technology EuMC28-3 Waveguide Measurements of Highly Anisotropic Graphene Augmented Inorganic Nanofibers Nikolaos Xenidis', Serguei Smirnov', Aleksandra Przewloka', Aleksandra Krajewska', Dmitri V. Lioubtcherko', Joachim Oberhammer' 'KTH Royal Institute of Technology, Stockholm, Sweden, 'CHUTERA Laboratories, Institute of High Pressure Physics PAS, 'KTH Royal Institute of Technology
DMA er ¹ ,	EuMC27-4 Microfabricated Capacitive Microwave Biosensor for Label- free Escherichia Coli Bacteria Detection Ilona Piekarz', Jakub Sorocki', Sabina Gorska ² , Krzysztof Wincza ¹ , Slawomir Gruszzynski ¹ 'AGH University of Science and Technology, 'Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences	EuMC28-4 Comparison of VNA and TDS Measurements for Material Char- acterization Using a Balanced- type Circular Disk Resonator Yuto Kato', Masaichi Hashimoto', Eiji Kato', Akira Kuwahara', Hiroyuki Shiotsuka' 'National Institute of Advanced Industrial Science and Technology (AIST), 'Advantest Corporation
oped r Linear		EuMC28-5 Comparison of TRL Calibration Standards and Techniques for Waveguide S-parameter Measure- ments up to Terahertz Frequencies James Skinner', James Campion', Nick Ridler' 'National Physical Laboratory (NPL), Teddington, 'Terasi AB, Sweden

WEDNESDAY 16:40 - 18:20

17:00

17:20

17:20

17:40

17:40

18:00

ROOM

EuMC/EuR 16:40 17:00

EuMC/EuRA

Yasin Özer¹, Selçuk P

Beta 3/4

EuMC/EuRAD06

Innovative Designs for Radar, Satcom and mm-Wave Antennas

Chair: Frédéric Gianesello¹ Co-Chair: Diego Caratelli² ¹STMicroelectronics, ²Eindhoven University of Technology (TU/e)

EuMC/EuRAD06-1

Active Phased Arrays for 5G and 6G Mobile Communication at Millimeterwaves Matthias Geissler¹

INDUSTRIAL KEYNOTE

EuMC/EuRAD06-2 Frequency Scanning X-Band Antenna for 3D Radar Systems

Stanislav Sekretarov¹, Dmytro Vavriv², Volodymyr Vynogradov², Andriy Kravtsov², levgen Bulah², Vladimir 7olotarev²

¹Institute of Radio Astronomy of the National Academy of Sciences of Ukraine , ²Institute of Radio Astronomy of the National Academy of Sciences of Ukraine

EuMC/EuRAD06-3 Low-profile and High-gain Dual-Linearly Polarized Offset Reflector Antenna at W-Band

Thi-Kim-Ngan Nguyen¹, David González-Ovejero¹, Ronan Sauleau

¹UNIVERSITÉ DE RENNES 1-UMR CNRS 6164 - IETR

in

EuMC/EuRAD06-4

A Novel Automotive Palmtree Antenna for 5G Inside Scarabeus **Ring Antennas for Satellite** Reception

Emanuel Panholzer¹, Stefan Lindenmeier ¹Universität der Bundeswehr München

EuMC/EuRAD06-5 Circular Polarized Compact Dual Antenna set for L-Band Space Applications

Azat Meredov¹, Stefan Lindenmeier ¹University of the Bundeswehr Munich

Beta 5

EuMC31 Calibration and deembedding Chair: Chong Li¹

Co-Chair: Xiaobang Shang² ¹University of Glasgow, ²National Physical Laboratory (NPL)

EuMC31-1 VNA Calibration using Coaxial Air Lines with Two Plug Connectors

Frauke Gellersen¹, Karsten Kuhlmann¹, Florian Rausche

¹Physikalisch-Technische Bundesanstalt (PTB)

EuMC31-2 S-Parameters De-Embedding at Cryogenic Temperature using One Reflect Standard

Marie Mbeutcha¹, Frank Schäfer¹, Patrick Pütz¹, Gundolf Wieching¹

¹Max Planck Institute for Radio Astronomy

EuMC31-3

RF Performances and De-**Embedding Techniques of Passive** Devices in 3D Homogeneous Integration at Sub-THz

Alexandre Oliveira¹, Olivier Valorge¹, Christophe Dubarry¹, Yannick Roelens², Mohammed Zaknoune², Jose Lugo-Alvarez¹ 1CEA - LETI, 2IEMN - CNRS

EuMC31-4

Influence of Dimensional and Material Parameters and their Uncertainties on Calculable Offset Shorts

Andreas Schramm¹, Frauke Gellersen¹, Karsten Kuhlmann

¹Physikalisch-Technische Bundesanstalt (PTB)

EuMC31-5 Interlaboratory Investigation of **On-wafer S parameter Measure**ments from 110 GHz to 1.1 THz

X. Shang', N. Ridler', U. Arz², G. N. Phung², I. Roch-Jeune², G. Ducournau², K. Haddadi¹, T. Flisgen⁴, R. Doerner⁴, D. Allal⁶, D. Jayasankar⁶, J. Stake⁵, R. Schmidt², G. Fisher⁴, F. Mubarak⁸

¹NPL, ²PTB, ³Univ. de Lille, ⁴FBH, ⁵LNE, ⁶Chalmers Univ. of Technology, ⁷Keysight Technologies ⁸FormFactor, ⁹VSL

THURSDAY 10:40 - 13:00

THURSDAY 09:00 - 10:40

Beta 6	Beta 7	Beta 8/9
EuMC32 Beam-Steering and Beam- Switching Array Antennas Chair: Bela Brian Szendrenyi ¹ Co-Chair: Yi Wang ² 'Advantest America Inc., ² University of Birmingham	EuMC33 Satcom and Millimeter-Wave Antennas Chair: Arne F. Jacob ¹ Co-Chair: Daniel Segovia-Vargas ² ¹ Hamburg University of Technology, ² Universidad Carlos III de Madrid, Leganes, Madrid, Spain	EuRADO7 Emerging Industrial Applications Chair: Felix Yanovsky' Co-Chair: Fabian Friederich ² 'National Aviation University, Kyiv, Ukraine, ² Fraunhofer Institute for Industrial Mathematics ITWM
EuMC32-1 Gapwaves Waveguide Technology Comes of Age Carlo Bencivenni', Abbas Voosogh', Abolfazl Haddadi' INDUSTRIAL KEYNOTE 'Gapwaves AB	EuMC33-1 New Design of a Bidirectional K- and Ka-Band Antenna Array for Multiple Beam-Steering Engelbert Tyroller', Andreas Krause', Stefan Lindenmeier' 'Institut für Hoch- und Höchstfrequenztechnik der Universität der Bundeswehr München	EuRADO7-1 Challenges and Solutions in Radar Device Developments fo Industrial Applications Christoph Schmits' INDUSTRIAL KEYNOTE 'KROHNE Innovation GmbH
EuMC32-2 A 64-Element Ultra-Wideband 23-46 GHz Tx/Rx 5G Phased Array with 50 dBm Peak EIRP and 2.4 Gb/s 64-QAM Operation Shufan Wang', Tian Liang', Abdulrahman Alhamed', Gabriel M. Rebeiz' 'University of California, San Diego, 'PSATRI, King Saud University	EuMC33-2 A Planar Polarization-Agile Array with Shared Aperture at K/ Ka-Band Noah Sielck', Kevin Erkelenz', Alexander Kölpin', Arne F. Jacob' ' Hamburg University of Technology	EuRADO7-2 Non-Destructive Characterizat of Electrode Films for Lithium- Battery Cells with an Optoelec tronic Terahertz FMCW Radar Shiva Mohammadzadeh', Andreas Kei', Joachim Jonuscheit', Fabian Friederich' 'Fraunhofer ITWM
EuMC32-3 Multibeam Metasurface Antenna Based on a Single Substrate Layer and One Feeding Port For Mil- limeter Wave Applications Mohammed Arif', Adrien Guth', Muh-Dey Wei', Dirk Heberling', Renato Negra' 'Chair of High Frequency Electronics, RWTH Aachen University, 'Institute of High Frequency Technology - RWTH Aachen University	EuMC33-3 A Compact Wide-Scanning Connected-Slot Array in a Standard PCB for Ku/K/Ka-Band Applications Syrine Hidri', Francesco Foglia Manzillo' 'CEA - LETI	EuRADO7-3 Analysis of Range-Doppler Rad Echos for Condition Monitoring Industrial Processes Robin Julias Schmitz', Michael Vogt', Maximilian Rotzheim', Markus Hammes', Christian Schulz', Barowski', Ilona Rolfes' 'Ruhr-University Bochum, Bochum, Germany, 'Ruhr-University Bochum, Bochum, Germany, KROHNE Messtechnik GmbH, Duisburg
EuMC32-4 A Wideband 16x16 Butler Matrix for Millimeter-Wave Beam-Switch- ing Applications Mehri Borhani Kakhki', Ahmed Shehata Abdellatif', Hari Krishna Pothula', David Wessel' 'Huawei Technologies Canada Co.	EuMC33-4 Silicon parallel-plate waveguide with controlled boundaries for broadcast applications in WiNoC architecture. Bryan Treguer', Thierry Le Gouguec', Pierre-Marie Martin', Rozenn Allanic', Cédric Quendo' 'Lab-STICC - UBO Brest	EuRADO7-4 Two Fully Integrated SiGe Rad Sensors for the Detection of Pa cle Streams Using Dual-Freque Measurements Kennet Braasch', Daniel Bruhn', Alexander Teply Leve Freiwald', Philip Durdaut', Florian Vogelsa Nils Pohl', Michael Hoft' 'Christian-Albrechts-Universität zu Kiel, ² Aeros GbR, 'Ruhr-Universität Bochum
	FuMC32 Beam-Steering and Beam- Switching Array Antennas Chair: Bela Brian Szendrenyi ¹ Co-Chair: Yi Wang ² 'Advantest America Inc., ² University of Birmingham EuMC32-1 Gapwaves Waveguide Technology Comes of Age Carlo Bencivenni ¹ , Abbas Voosogh', Abolfazl Haddadi ¹ INDUSTRIALKEYNOTE ''Gapwaves AB EuMC32-2 A 64-Element Ultra-Wideband 23-46 GHz Tx/Rx 5G Phased Array with 50 dBm Peak EIRP and 2.4 Gb/s 64-QAM Operation Shufan Wang', Tian Liang', Abdulrahman Alhamed ⁴ , Gabriel M. Rebeiz ¹ ''University of California, San Diego, 'PSATRI, King Saud University Bultibeam Metasurface Antenna Based on a Single Substrate Layer and One Feeding Port For Mil- limeter Wave Applications Multibeam Metasurface Antenna Based on a Single Substrate Layer and One Feeding Port For Mil- limeter Wave Applications Mohammed Arif', Adrina Guth', Muh-Dey Wei', Dirk Hebring', Renato Negra' ''Chair of High Frequency Electronics, RWTH Aachen University, 'Institute of High Frequency Technology- RWTH Aachen University EuMC32-4 A Wideband 16x16 Butler Matrix for Millimeter-Wave Beam-Switch- ing Applications Mehri Borhani Kakhki', Ahmed Shehata Abdellatif', Hari Krishna Pothula', David Wessel'	EUMC32 Beam-Steering and Beam-Switching Array Antennas Satcom and Millimeter-Wave Antennas Chair: Bela Brian Steendrenyi' Co-Chair: Y Wang'' Satcom and Millimeter-Wave Antennas Chair: Shale Brian Steendrenyi' Co-Chair: Chaire Status' Co-Chair: Chaire Status' 'Advantes Marenica Inc., 'University of Birmingham EuMC32-1 Co-Chair: Chaire Status' EuMC32-1 Gapwaves Waveguide Technology. 'University of Technology. Carlo Benviewiri, 'Abats Voosegir', Aboitad Hadded' New Design of a Bidirectional K-advid. Spain Carlo Benviewiri, 'Abats Voosegir', Aboitad Hadded' New Design of a Bidirectional K-advid. Spain 'Torpersers AB EuMC32-2 Advantes Kause', Stefan Channel, Spain 'Tapwews AB EuMC32-2 Advantes Stefan Channel, Channel, Spain 'Status' Marg, 'Ina Ling', Advidrationan Altanent', Charlos K. Rovin Externs', Alexander Kölpin', Amer Stefan Charles Mancel, Charlos Charles Mancel, Charlos Charles Mancel, Charles Mancel, Charlos Charles Mancel, Spain Status', Tan Ling', Advidrationan Altanent', Tahweish Mancel, Charles

10:20 10:40

Radar-Based Human Activity Recognition with Range-distributed Time-Doppler Sparse Point Cloud and Multi-Channel PointNet

EuMC32-5

Beiran Wang¹, Chuanwei Ding¹, Haoyu Chen¹, Hong Hong¹, Xiaohua Zhu¹ ¹Nanjing University of Science and Technology

EuMC33-5

Surface Wave Mitigation Based on Finite EBG Structures for W-Band Radar Millimeter-Wave MIMO Antenna Arrays

Riana Helena Geschke¹, Carlos Sempere Sempere Chaves¹, Christian Krebs¹ ¹Fraunhofer FHR (Fraunhofer Institute for High Frequency Physics and Radar Techniques FHR)

ca-

for

ation m-lon ecim

adar ng in

an r², Jan ÓHNE

ıdar Partiiency

olyuk¹, sang³, osense

EuRAD07-5 FFT Based Angle Detection of Fiber Glass Layers

André Froehly¹, Bibash Thapaliya¹, Reinhold Herschel¹, Patrick Wallrath¹ ¹Fraunhofer Institute for High Frequency Physics and Radar Techniques (FHR)

Exhibition Hall EuMC/EuRAD07 EuMC/EuRAD Poster Chair: Marlene Harter

Co-Chair: Amelie Hagelauer^a ¹Offenburg University of Applied Sciences, ²Fraunhofer EMFT

EuMC/EuRAD07-1 IEEE 802.15.4z UWB Angle of Departure Tag Design for Indoor Positioning Sumin Han', HOWON YOO', Hosung Choo², Byung-Jun Jang¹

¹Kookmin University, ²Hongik University

EuMC/EuRAD07-5 **Time-Frequency Synchronization** for CaCS-Based Radar Systems in Interference Scenarios Mohamad Basim Alabd', Joel Dittmer', Benjamin Nuss', Yueheng Li', Lucas Giroto de Oliveira', Axel Diewald', Thomas Zwick' ¹Karlsruhe Institute of Technology (KIT)

EuMC/EuRAD07-2 A Non-Linear Transmission Line with Secondary Soliton Decimation Tyler Kelley', Stephen Pancrazio', Pouya Emani', Nhat Tran', Anh-Vu Pham'

¹University of California Davis (UC Davis)

EuMC/EuRAD07-6 Design and Evaluation of a Joint Communication and Sensing System Using FMCW-Radar and FŚK in V-Band

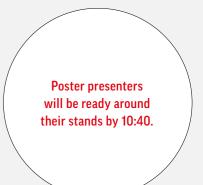
Samira Faghih-Naini', Sebastian Peters', Thomas Kurin', Torsten Reißland', Robert Weigel' ¹Friedrich-Alexander Universität Erlangen-Nürnberg

EuMC/EuRAD07-3 Monopulse Angle Measurement with Orbital Angular Momentum Charge Distribution Shikang Li¹, Meng Zhang¹, Xianzhe Xu¹, Rentuo Tao¹, Yawei Chen¹

EuMC/EuRAD07-7 Modeling, Analysis and Optimization of Low-Altitude Air Traffic Control in Joint Radar and Communication Networks Xianzhe Xu¹, Shikang Li¹, Rentuo Tao¹, Yawei Chen¹

¹Key Laboratory of Intelli Sense Technology, CETC ¹Nanjing Research Institute of Electronics Technology

EuMC/EuRAD07-4


A Quantized Lobes Reduction Method based on Thinned Strategy for Overlapped Subarray Architecture

¹National University of Defense Technology

EuMC/EuRAD07-8 An Initialization Method for Ultra-Precise Holographic Wireless Local Positioning Stefan Brückner', Erik Sippel', Patrick Gröschel', Markus Hehn', Martin Vossiek'

Hui Zeng¹, Zhenhai Xu¹, GongQing Yang¹, Wei Dong¹, Shun ping Xiao¹

EuMC/EuRAD07-9 Experimental Investigation of Millimeter-Wave 3D Image Projection Using Dielectric Lens for Security Application

Arie Setiawan¹, Naruto Yonemoto², Hitoshi Nohmi³, Hiroshi Murata¹

¹Mie University, Japan, ²Electronic Navigation Research Institute, National Institute of Maritime, Port, and Aviation Technology, ³Alouette Technology Inc.

EuMC/EuRAD07-10 Design of a Contactless Vital-Signal Sensor based on Six-Port Technology and Experiment of WiFi Interference

Chun-Yu Fan¹, Adham Karakish², Muh-Dey Wei¹, Renato Negra¹

¹RWTH Aachen University, ²Fraunhofer FHR

THURSDAY 11:20 - 13:00

Beta 2	Beta 3/4	Beta 5	ROOM	Beta 6	Beta 7	Beta 8/9
EuMC34 Wearable and Flexible Solu- tions for Energy Harvesting Chair: Thomas U&müller ¹ Co-Chair: Alessandra Costanzo ² 'University of Innsbruck, ² Università di Bologna	EuMC35 Innovative Concepts for Radar, Satcom and mm-Wave Antennas Chair: Matthias Geissler' Co-Chair: Laure Huitema ² 'IMST GmbH, ² XLIM - CNRS - Universite de Limoges	EuMC36 Channel Modelling and Measurement Chair: Jakub Sorocki' Co-Chair: Reiner S. Thomā ² 'AGH University of Science and Technol- ogy, ² Technische Universität Ilmenau		EuRADO9 Machine Learning for Radar Chair: Francesco Fioranelli ¹ Co-Chair: Jacco de Wit ² ¹ TU Delft, ² TNO	EuRAD10 Modelling and Simulation Chair: Piotr Samczyński ² Co-Chair: Fatemeh Norouzian ¹ 'University of Birmingham, ² Warsaw University of Technology WUT	EuMC37 Microwave Sensors for Mate- rial Measurements Chair: Tuami Lasri' Co-Chair: Ilona Rolfes ² 'IEMN-University of Lille, ² Ruhr-Univer- sität Bochum
EuMC34-1 A Flexible Wearable Rectenna Us- ing AMC for WBAN Applications Elie Zaraket', Yéro Dia', Ludivine Fadel', Laurent Oyhenart', Valérie Vignéras' 'Laboratoire IMS, CNRS UMR, 5218, Université de Bordeaux, Bordeaux INP, Talence Cedex, France	EuMC35-1 Challenges and Outlook of the Overall Front-End of Future SATCOM Missions Based on Active Array Antennas Jean-Philippe Fraysse' INDUSTRIAL KEYNOTE 'Thales Alenia Space	EuMC36-1 Ray-Optical Modeling of Wireless Coverage Enhancement Using Engineered Electromagnetic Sur- faces: Experimental Verification at 28 GHz Vo de Jong ¹ , Reza Chaharmir ¹ , Shailesh Raut ¹ , Donald McLachlan ¹ , Ming Zhang ¹ , Gary Bedrosian ² , Mendel Schmiedekamp ² , James DeLancey ² , Ruth Silber Belmonte ⁸	11:20 11:40	EuRADO9 Best of Both Worlds: Physics and Machine Learning in Automotive Radar Simulation Alexander Suhre' INDUSTRIAL KEYNOTE Valeo Schalter und Sensoren GmbH	EuRAD10-1 Collaborative Sensing with UWB Radar Kristian Granhaug' INDUSTRIAL KEYNOTE 'Novelda AS	EuMC37-1 One-Port CSRR Structure for Dielectric Characterization of Lossy Materials Matko Martinic', Maede Chavoshi', Dominique Schreurs', Tomislav Markovic', Bart Nauwelaers' 'KU Leuven ESAT, ² University of Zagreb, FER
EuMC34-2 Design of Compact and High-Effi- ciency Broadband Rectifier With Harmonic Suppression Transfer- ring for Biomedical Implants Applications Gia Thang Bui', Dang-An Nguyen', Chulhun Seo' 'Soongsil University	EuMC35-2 Filtenna Array Design via a Lossy Coupled-Resonators Filter Approach Matteo Oldoni', Gian Guido Gentili', Fabien Seyfert ² , Giuseppe Macchiarella', Cristina D'Asta' 'Politecnico di Milano, ² HighFSolutions	EuMC36-2 Measurement and Statistics of Rain Attenuation on Terrestrial Link at 240, 270 and 300 GHz Heejun Park', Jangsuk Choi', Hyunji Bae', Jaeho Seok' 'National Radio Research Agency(RRA)	11:40 12:00	EuRADO9-1 Machine Learning-Enhanced Gyro mmID-Sensor for Virtual Reality and Motion Tracking Applications Marvin Joshi', Charles Lynch', Genaro Soto-Valle', Ajibayo Adeyeye', Ryan Bahr ² , Manos M. Tentzeris' 'Georgia Institute of Technology, ³ Nano Dimension	EuRAD10-2 A Beat Signal Processing System with Parabolic Frequency Chirp Radar and Computation-in- Memory Kazuhide Higuchi', Ken Takeuchi' 'The University of Tokyo	EuMC37-2 Microwave Microfluidic Sensor for Detecting Organic and Inorganic Compounds in Water Amir Ebrahimi', Kamran Ghorbani' 'RMIT University
EuMC34-3 Flexible Textile Antenna for Detection of 5G Bandwidth in Wearable Systems Joana Tavares', Caroline Loss ² , Pedro Pinho ³ , Helena Alves ¹ 'INESC MN, ² Instituto de Telecomunicacoes - Univ. Aveiro, ³ University of Aveiro	EuMC35-3 A Monolithically Polyjet 3-D Print- ed Millimeter-Wave Quasi-Planar Air-Filled Cavity-Backed Patch Antenna With Enhanced Gain Jiangiu Qin', Jin Li', Yueguang Lu', Sicheng Chen', Kai-Dong Hong', Tao Yuan' 'Shenzhen University	EuMC36-3 Contactless Flange Made the Sub- THz VNA Calibration and Testing Faster and More Accurate Lingyun Ren', David Nixt', Yonghui Shu' 'Eravant	12:00 12:20	EuRADO9-2 Hardware Deployable Radar Spectrum-based CNN Classifier for Drone Targets Dario Del Gaizo ¹ , Francesco De Palo ² , Fabio Cipriani ² , Luca Giancane ³ ¹ YCTH - Royal Institute of Technology, ² Rheinmetall Italia S.p.A	EuRAD10-3 Repeatable Wave Data for Sub-THz Radar Marine Target Detection Experiments Dillon Kumar', Samuel Harris', Liam Daniel', Marina Gashinova', Mikhail Cherniakov', Edward Hoare', Anum Pirkani' 'University of Birmingham	EuMC37-3 Analytical Design of Phase Variation-Based Dielectric Constant Sensors Zahra Mehrjoo', Amir Ebrahimi', Kamran Ghorbani' 'RMIT University
EuMC34-4 Flexible Printed Rectenna Based on a 2.45 GHz CPW Rectifier for Energy Harvesting Applications Alassane Sidibe', Alexandru Takacs', Samuel Charlot ² , Daniela Dragomirescu ² 'LAAS-CNRS, Université de Toulouse, CNRS, UT3, Toulouse, France, ² LAAS-CNRS, [*] LAAS-CNRS, INSA	EuMC35-4 A Novel Type of 76 GHz Array Antenna Based on Synthesis with Filter Technique Kenichi lio', Isao Ohta' 'Furuno Electric Co.Itd, ² University of Hyogo	EuMC36-4 Complexity Reduction Techniques for a Frame Based Dynamic Ray Tracing Approach Enes Aksoy', Haroon Khan', Leszek Raschkowski ² , Lars Thiele ⁴ , Slawomir Stanczak ² 'Huawei Munich Research Center, ³ Fraunhofer Heinrich Hertz Institute	12:20 12:40	EuRADO9-4 Angle-Equivariant Convolutional Neural Networks for Interference Mitigation in Automotive Radar Christian Oswald', Mate Toth', Paul Meissner ² , Franz Pernkopf' ¹ Signal Processing and Speech Communication Laboratory, Graz University of Technology, Austria, ^a Infineon Technologies Austria AG	EuRAD10-4 A Simulator for CaCS-based Radar Systems in Multi-User Automotive Scenarios Mohamad Basim Alabd', Joel Dittmer', Jean-Pierre Messmer', Benjamin Nuss', Yueheng Li', Johannes Galinsky', Thomas Zwick' 'Karlsruhe Institute of Technology (KIT)	EuMC37-4 High Temperature Probe for Meas- uring Dielectric Parameters Baptiste HENRIOT, Jesse Allens TOUDYEM TALLA ² , Olivier Tantot', Nicolas Delhote', Serge Verdeyme', Jana RANDRIANALISOA ² , Thierry DUVAUT ² , Michaël CHARLES ³ ¹ XLim - UMR 7252 - CNRS- Limoges University, ³ TheMM/Université de Reims Champagne-Ardenne, ³ CEA Le Ripault
EuMC34-5 IR-UWB Reader for Credit Card- Sized NFC Chipless RFID Tag using Asymmetrical Stepped Impedance Resonators Fuminori Sakai', Koji Wada', Mitsuo Makimoto ² 'Sakura Tech corporation, ² The University of Electro- Communications	EuMC35-5 Dielectric Filled Waveguide Antenna for Air-Borne Application Madhumita Chakravarti', Anil Chepala', Asudeb Dutta' 'Indian Institute of Technology, Hyderabad, 'Research Centre Imarat, DRDO	EuMC36-5 RCS-Based Quasi-Deterministic Ray Tracing for Statistical Channel Modeling Javad Ebrahimizadeh', Evgenii Vinogradov², Guy Vandenbosch² 'KULeuven , *Technology Innovation Institute , 'KULeuven	12 <u>:</u> 40 13:00	EuRADO9-5 Generating and Using Synthetic Data for Machine Learning in Personnel Security Screening Scenarios Georg Schnattinger', Christoph Baur', Benedikt Huber' 'Rohde & Schwarz GmbH	EuRAD10-5 Radar Target Simulator Based on Instantaneous Intra-Chirp FMCW Parameter Estimation Christoph Birkenhauer', Matthias Kühnlein', Georg Körner', Patrick Stief', Matthias Gareis', Christian Carlowitz', Martin Vossiek' 'Institute of Microwaves and Photonics (LHFT), Friedrich-Alexander-Universität Erlangen-Nürnberg	EuMC37-5 Characterization of Edible Oils Subjected to Industrial Frying Processes through High Sensitiv- ity Microwave Sensors Jonathan Muñoz-Enano', Paris Vélez', Pau Casacu- berta', Lijuan Su', Ferran Martín' 'Universitat Autònoma de Barcelona

THURSDAY 11:20 - 13:00

ROOM	Alpha 6	Beta 2	Beta 3/4	Beta 5
	EuRADO8 Focused Session Automotive PMCW Radars Part 2 Chair: André Bourdoux' Co-Chair: Alessio Filippi ² 'imec, ² NXP Semiconductors	EuMC34 Wearable and Flexible Solu- tions for Energy Harvesting Chair: Thomas Ußmüller' Co-Chair: Alessandra Costanzo ² 'University of Innsbruck, ² Università di Bologna	EuMC35 Innovative Concepts for Radar, Satcom and mm-Wave Antennas Chair: Matthias Geissler' Co-Chair: Laure Huitema ² 'IMST GmbH, ² XLIM - CNRS - Universite de Limoges	EuMC36 Channel Mod Measuremen Chair: Jakub Soror Co-Chair: Reiner S 'AGH University o ogy, *Technische U
11:20 11:40	EuRADO8-1 The Impact of Transceiver Non- linearity in PMCW Radar using Polyphase Coded Sequences Daan Rosenmuller', Bas van de Ven', Kostas Doris', Georgi Radulov', Marion Matters', Erwin Janssen' 'NXP Semiconductors Eindhoven, 'Eindhoven University of Technology (TU/e)	EuMC34-1 A Flexible Wearable Rectenna Us- ing AMC for WBAN Applications Elie Zaraket', Yéro Dia', Ludivine Fadel', Laurent Oyhenart', Valérie Vignéras' 'Laboratoire IMS, CNRS UMR, 5218, Université de Bordeaux, Bordeaux INP, Talence Cedex, France	EuMC35-1 Challenges and Outlook of the Overall Front-End of Future SATCOM Missions Based on Active Array Antennas Jean-Philippe Fraysse' INDUSTRIAL KEYNOTE 'Thales Alenia Space	EuMC36-1 Ray-Optical Mo Coverage Enha Engineered Ele faces: Experim at 28 GHz Yvo de Jong', Reza Chał McLachlan', Ming Zhan Schmiedekamp'', James Belmonte'
11:40 12:00	EuRADO8-2 Waveform Design for 4D-Imaging mmWave PMCW MIMO Radars with Spectrum Compatibility Nazila Karimian Sichani', Mohammad Alaee- Kerahroodi', M. R. Bhavani Shankar', Esfandiar Mehrshahi', Seyyed Ali Ghorashi' 'Shahid Beheshti University, 'University of Luxem- bourg, 'University of East London	EuMC34-2 Design of Compact and High-Effi- ciency Broadband Rectifier With Harmonic Suppression Transfer- ring for Biomedical Implants Applications Gia Thang Bui', Dang-An Nguyen', Chulhun Seo' 'Soongsil University	EuMC35-2 Filtenna Array Design via a Lossy Coupled-Resonators Filter Approach Matteo Oldoni', Gian Guido Gentili', Fabien Seyfert', Giuseppe Macchiarella', Cristina D'Asta' 'Politecnico di Milano, 'HighFSolutions	EuMC36-2 Measurement a Rain Attenuatii Link at 240, 27 Heejun Park', Jangsuk C 'National Radio Resear
12:00 12:20	EuRADO8-3 Mismatched Filters for High- Velocity Target Detection in PMCW Radars Adham Sakhnini', Marc Bauduin', André Bourdoux ² , Sofie Pollin' 'KU Leuven & IMEC, ² imec, Leuven	EuMC34-3 Flexible Textile Antenna for Detection of 5G Bandwidth in Wearable Systems Joana Tavares', Caroline Loss ² , Pedro Pinho ³ , Helena Alves' "INESC MN, ² Instituto de Telecomunicacoes - Univ. Aveiro, ³ University of Aveiro	EuMC35-3 A Monolithically Polyjet 3-D Print- ed Millimeter-Wave Quasi-Planar Air-Filled Cavity-Backed Patch Antenna With Enhanced Gain Jiangiu Qin', Jin Li', Yueguang Lu', Sicheng Chen', Kai-Dong Hong', Tao Yuan' 'Shenzhen University	EuMC36-3 Contactless Fla THz VNA Calibr Faster and Mor Lingyun Ren', David Nio 'Eravant
12:20 12:40	EuRADO8-4 Mutual Interference Mitigation in PMCW Automotive Radar Zahra Esmaeilbeig', Arindam Bose ² , Mojtaba Soltanalian' 'UIC, ?KMB Telematics, Inc.	EuMC34-4 Flexible Printed Rectenna Based on a 2.45 GHz CPW Rectifier for Energy Harvesting Applications Alassane Sidibe', Alexandru Takacs', Samuel Charlot ² , Daniela Dragomirescu ³ 'LAAS-CNRS, Université de Toulouse, CNRS, UT3, Toulouse, France, "LAAS-CNRS, 'LAAS-CNRS, INSA	EuMC35-4 A Novel Type of 76 GHz Array Antenna Based on Synthesis with Filter Technique Kenichi lio', Isao Ohta [*] 'Furuno Electric Co.Itd, ² University of Hyogo	EuMC36-4 Complexity Red for a Frame Bas Tracing Approa Enes Aksoy', Haroon Kt Lars Thiele', Slawomir S 'Huawei Munich Resea Heinrich Hertz Institute
12:40 13:00	EuRADO8-5 Joint Design of Binary Probing Se- quences and Mismatched Receive Filters for PMCW Radar Ronghao Lin', Yutao Chen', Jian Li ² 'University of Science and Technology of China, 'University of Florida	EuMC34-5 IR-UWB Reader for Credit Card- Sized NFC Chipless RFID Tag using Asymmetrical Stepped Impedance Resonators Fuminori Sakai', Koji Wada', Mitsuo Makimoto' 'Sakura Tech corporation, 'The University of Electro-	EuMC35-5 Dielectric Filled Waveguide Antenna for Air-Borne Application Madhumita Chakravarti', Anil Chepala', Asudeb Dutta' 'Indian Institute of Technology, Hyderabad, 'Research Centre Imarat, DRDO	EuMC36-5 RCS-Based Qua Ray Tracing for Modeling Javad Ebrahimizadeh', E Vandenbosch' 'KULeuven , 'Technolo 'KULeuven

THURSDAY 14:20 - 16:00

PROGRAMME

THURSDAY 14:20 - 16:00

ROOM	Alpha 6	Beta 2	Beta 3/4	Beta 5	ROOM	Beta 6	Beta 7
	EuMC/EuRADO8 Microwave Sensing Systems and Components Chair: Thomas Musch ¹ Co-Chair: Kamran Ghorbani ² 'Ruhr-Universität Bochum, ² RMIT University	EuMC38 MHz to GHz Components and Sub-Systems for Wireless Data and Power Transfer Chair: Jasmin Grosinger ¹ Co-Chair: Nuno Borges Carvalho ² 'Graz University of Technology, 'University of Aveiro / Instituto de Telecomunicações	EuMC39 OTA and Wideband Measure- ments Chair: Marco Farina' Co-Chair: Paola Russo' 'Università Politecnica delle Marche	EuMW07 Special Session India Business Chair: Ramesh Gupta' 'Ligado Networks		EuMC40 5G and MIMO Antennas Chair: Dirk Heberling' Co-Chair: Ioan E. Lager ² 'Institute of High Frequency Technology - RWTH Aachen, ² Delft University of Technology	EuMC/EuRADO9 Advancement in Radar Systems and Concepts Chair: Mayazzurra Ruggiano' Co-Chair: Hasan Shariff ² 'Thales Nederland B.V., ² HRL
14:20 14:40	EuMC/EuRADO8-1 A Picosecond Pulse Transmission and Reception System for Next Generation Wireless Sensing and Imaging Applications MuhibUr Rahman', Ke Wu' 'Polytechnique Montreal	EuMC38 Millimeter-Wave Ferrite Compo- nents Operating in Rectangular Waveguide Bands from 25 to 400 GHz David Porterfield' INDUSTRIAL KEYNOTE 'Micro Harmonics Corporation	EuMC39-1 Comparison of OTA Test Methodologies for Vehicle EIRP Measurements Lukas Berkelmann', Carsten Monka-Ewe', Zhichao Chen', Bert Jannsen' 'Volkswagen Aktiengesellschaft	EuMW07-1 RF Technology Considerations for Space Based Telecom Networks Ramesh Gupta' 'Ligado Networks	14:20 14:40	EuMC40-1 Small Dual-Band 3D Beamforming MIMO Antenna Abel Zandamela', Nicola Marchetti', Adam Narbudowicz' 'Trinity College Dublin	EuMC/EuRADO9-1 Supporting Space Domain Aware- ness with the SMART-L MM radar Erwin van der Poel' INDUSTRIAL KEYNOTE 'Thales Nederland B.V.
14:40 15:00	EuMC/EuRADO8-2 Model-Based Sensor Fusion Ap- proach for FMCW Radar Sensors in Non-Destructive Testing Jochen Altholz', Francesca Schenkel', Nils Pohl', Ilona Rolfes', Jan Barowski' 'Ruhr-University Bochum, Bochum, Germany	EuMC38-1 Highly Efficient HEMT Recti- fier with a Wide Dynamic Range Based on a Hybrid Coupler for Wireless Power Transfer Jinyao Zhang', Yi Huang', Jiafeng Zhou' 'University of Liverpool	EuMC39-2 An Experimental Study on Ef- ficient Antenna OTA Test Method for Automotive Applications Zhichao Chen', Lukas Berkelmann', Carsten Monka- Ewe', Bert Jannsen' 'Volkswagen Aktiengesellschaft	EuMW07-2 Medical Applications of Electro- magnetics Shiban Koul' 'Indian Institute of Technology	14:40 15:00	EuMC40-2 A Highly Integrated 5G mm-Wave Phased Array System at N257/ N261 Bands with 54 dBm Linear EIRP Chih-Hsiang Ko', Tumay Kanar', Arjun Kamath', Calogero Presti', Himanshu Khatri', Jitesh Shah', Mohammad Ghadir'-Sadrabadi', Morteza Abbasi', Samet Zihi', Sataporn Pornpromlikit.', Wei-Ting Wong', Ming Lim'	EuMC/EuRADO9-2 TanDEM-X Mission Status Christo Grigorov', Markus Bachmann', Johannes Böer', Thomas Kraus', Marie Lachaise', Manfred Zink' 'Microwaves and Radar Institute, German Aerospace Center (IDR), 'Remote Sensing Technology Institute, German Aerospace Center (DLR)
15:00 15:20	EuMC/EuRADO8-3 Experimental Verification of a Digital Delay Transponder Used as an In-Ice Synthetic Aperture Radar Reference Target Michael Steizig', Andreas Benedikter ² , Ralf Horn ² , Marc Jäger ² , Martin Keller ² , Rolf Scheiber ² , Niklas Haberberger ² , Lena Krabbe ² , Gerhard Krieger ² , Martin Vossiek ²	EuMC38-3 Backscatter Tag Based on an Actively-Controlled Reflection Amplifier Marc Lázaro Martí', Antonio Ramon Lázaro Guillén', Ramón Maria Villarino Villarino', David Girbau Sala' 'Rovira and Virgili University	EuMC39-3 Deterministic Detection and Vector Band Stitching for the Measurement of 6G Wideband Test Signals Jean-Pierre Teyssier', Joel Dunsmore', Nizar Mes- saoudi', Jan Verspecht' 'Keysight Technologies	EuMW07-3 Wireless Power Transfer Research in India Chinmoy Saha' 'Indian Institute of Science and Technology	15:00 15:20	EuMC40-3 Influence of the Communica- tion Environment on Orbital Angular Momentum (OAM) Mode Orthogonality Michael Wulff', Lei Wang [*] , Alexander Kölpin [*] , Christian Schuster [*] [*] Hamburg University of Technology (TUHH), [*] Heriot- Watt University	EuMC/EuRADO9-3 Dynamic Multi-Target Detection and Focus in Maritime Conditions Anum Pirkani', Dillon Kumar', Liam Daniel', Edward Hoare', Mikhail Cherniakov', Marina Gashinova' 'The University of Birmingham
15:20 15:40	EuMC/EuRADO8-4 A 30 kW Peak - 350 W CW Mechanically Controlled Low-Loss X-Band Variable-Ratio 2-way Power Divider using VESPEL* Dielectric Material Maurizio Cirillo', Danio Salimbeni', Antonio Morini ² 'Rheinmetall Italia SpA, 'NotOnlyWaves Sr.1	EuMC38-4 Wireless Radiative Near-Field Links through Wideband Bessel- Beam Launchers Edoardo Negri', Luca Del Biondo', Walter Fuscaldo [*] , Paolo Burghignoli', Alessandro Galli' 'Sapienza University of Rome, Italy, [*] CNR-IMM, Consiglio Nazionale delle Ricerche, Rome, Italy	EuMC39-4 Wideband Cross-Domain Charac- terization of a W-Band Amplifier MMIC Benjamin Schoch', Dominik Wrana', Axel Tessmann [*] , Ingmar Kallfass' 'Institute of Robust Power Semiconductor Systems (LH) - University of Stuttgart, 'Fraunhofer Institute for Applied Solid State Physics (IAF)		15:20 15:40	EuMC40-4 A Novel Dual-Wideband Four-Port MIMO Filtenna for Sub-6 GHz 5G Communication Systems Alper Turkeli', Ali Kursad Gorur', Yasemin Altuncu' 'Nevsehir Haci Bektas Veli Univ., 'Nevsehir Haci Bektas Veli University, 'Nigde Omer Halisdemir University	EuMC/EuRADO9-4 Robustness of Photonics-based Coherent Multi-Band MIMO Radar to Fiber-based Signal Distribution Antonio Malacarne', Salvatore Maresca', Gaurav Pandey', Malik Muhammad Haris Amir', Antonella Bogon', Mirco Scaffardi' 'CNIT, 'CNR - IEIIT, 'SCUOLA SUPERIORE SANTANNA
15:40 16:00		EuMC38-5 Data Transfer in an Injection- Locked Oscillator Coupled to an External Resonator Franco Ramirez', Victor Ardila', Almudena Suarez Rodriguez' 'Universidad de Cantabria	EuMC39-5 Sub-THz/mm-Wave Out-of-Band Distortion Product Measurements: A Hybrid Banded-Broadband Approach Jon Martens' 'Anritsu		15:40 16:00	EuMC40-5 Circularly Polarized Patch Antenna Array for 5G Automotive Satellite Communications Umais Tayyab', Ashish Kumar', Hans-Peter Petry ² , Md. Golam Roban', Thomas Wack', Matthias A. Hein' 'Technische Universität Ilmenau, "Deutsches Zentrum für Satellitenkommunikation (DeSK), 'Wiegand GmbH	EuMC/EuRADO9-5 Cramer-Rao Lower Bound of Localization of a Moving Target by a Dynamic Multistatic Radar Detmer A. Bosma', Philipp Markiton [*] ^T NO, Netherlands, [*] Traunhofer FHR (Fraunhofer Institute for High Frequency Physics and Radar Techniques FHR)

Beta 8/9

EuRAD11 Automotive Radar

Chair: Claudia Vasanelli¹ Co-Chair: Stéphane Kemkemian² ¹Texas Instruments, ²Thales Defence Mission Systems (TDMS)

EuRAD11-1 Radar Semiconductors for Driver

Assistance, Automated Driving and Adjacent Applications

Philipp Ritter¹ INDUSTRIAL KEYNOTE 'Robert Bosch GmbH

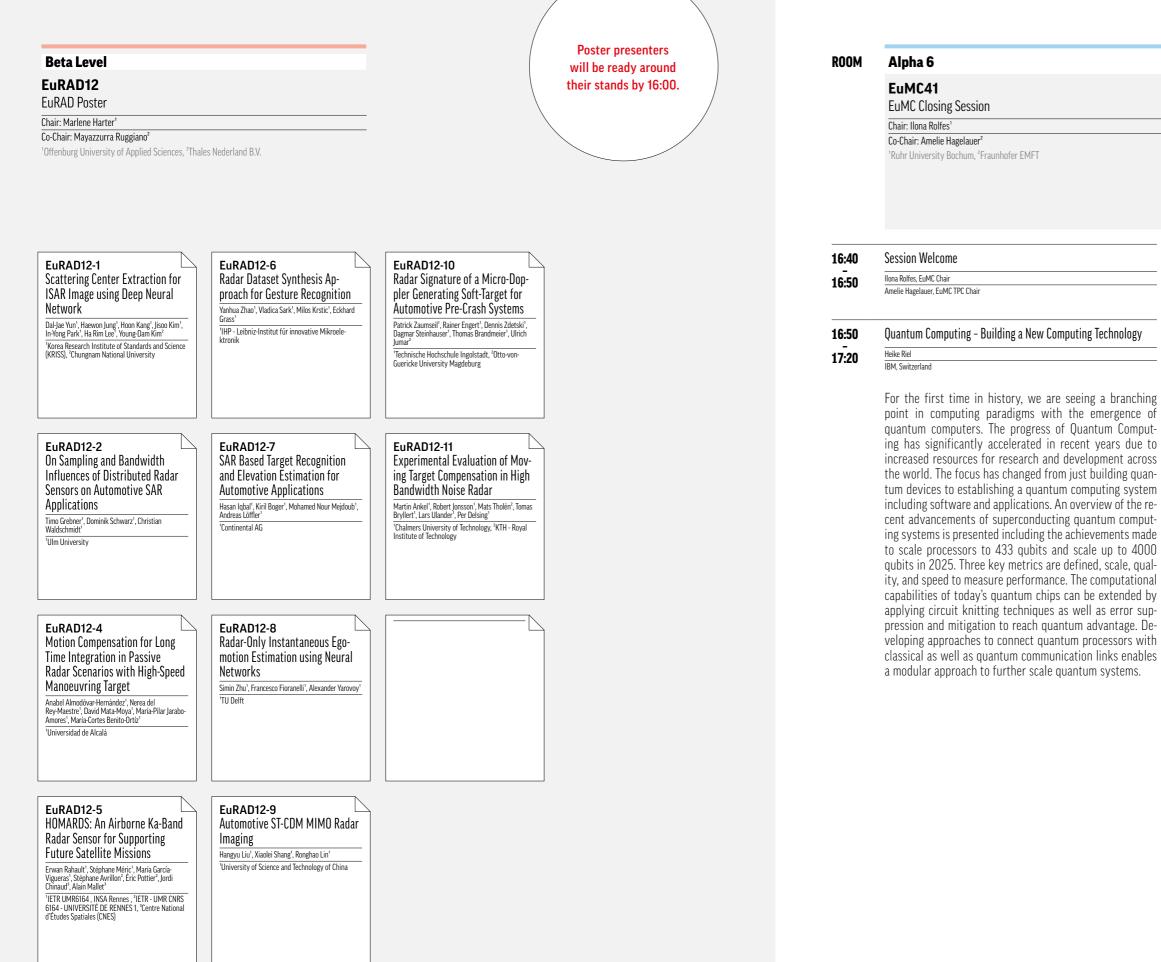
EuRAD11-2 Doppler Division Multiplexing Using Non-Power-of-Two PSK Orders

Nayeul Jeannin', Dian Tresna Nugraha', Oliver Lang³ ¹Infineon Technologies AG, ²P.T. Infineon Technologies Indonesia, ³JKU University Linz

EuRAD11-3 Single Cycle Velocity Vector Estimation Using a Full-Coherent MIMO Radar Network

Sergio López Fernández', Andawattage Chaminda Janaka Samarasekera', Reinhard Feger', Andreas Stelzer', Anusha Hanumegowda² ¹Johannes Kepler University Linz, ²ZF Frie-drichshafen AG

EuRAD11-4 Range-Doppler Circulating LFM for Automotive MIMO Radars


Nikita Petrov¹ ¹NXP Semiconductors Eindhoven

EuRAD11-5 Convergence of Scattering Parameters and H-alpha-A Features of Road Surfaces

Wietse Bouwmeester¹, Francesco Fioranelli¹, Alexander Yarovoy¹ ¹TU Delft

THURSDAY 16:00 - 18:20

THURSDAY 16:40 - 18:20

17:20	Beams from Space: The Future of Energy?	
17:50	Jean-Dominique Coste	
17.50	Airbus, Germany	

Energy challenges are arguably the most pressing for our society today: the source of energy, its distribution, and strategic control. Power beaming technology addresses all of these challenges. It enables the transfer of energy across air and space, via beams - similarly to how we transmit data today. It removes the need for cables, using focused microwave beams. Taken to space, it unlocks the world's only persistent renewable energy source: The Sun in space. While all other renewables on Earth are intermittent, solar energy in space is available 24/7 at maximum power, making it ideal for baseload grid capacity. A solar farm deployed in space could beam green energy to Earth on demand, where it is needed, with full strategic control over the energy network. Closer to the ground, power beaming could also redefine energy networks by making them flexible and easily deployable. This talk will introduce the concept, and present how Airbus is pioneering the technology in Europe.

14:55	Awards Ceremony		
15:10	Michael Gadringer		
13.10	EuMW 2023 Awards Chair		
	EuMW 2023 Awards Chair		
	EuMC Prize		
	EuMC Young Engineer Prizes		
18:10	Closing Remarks		
18:20	Thomas Zwick		
10:20	EuMW 2023 General Chair		
	Invitation to EuMW 2024		
	Guillaume Ducournau		
	EuMW 2024 General Chair		

FRIDAY 09:00 - 10:40

FRIDAY 11:20 - 13:00

00M	Beta 6 EuRAD13 Focused Session UAV-based Radar Chair: Christina Bonfert ¹ Co-Chair: Ingrid Ullman ² 'University of Ullm, ² Institute of Micro- waves and Photonics, Friedrich-Alexan- der-Universität Erlangen-Nürnberg	Beta 7 EuRAD14 mm-Wave Hand Gesture Recognition Chair: Jürgen Hasch' Co-Chair: Ronny Harmanny ² 'Robert Bosch GmbH, ² Thales Nederland B.V.	Beta 8/9 EuRAD15 Short Range Imaging Radar Chair: Marina Gashinova' Co-Chair: Laurent Ferro-Famil ² 'University of Birmingham, ² ISAE- SUPAERO	ROOM	Beta 6 EuRAD16 Radar Sensing and Joint Com- munication Chair: Stéphane Méric' Co-Chair: Mayazzurra Ruggiano ² 'IETR, INSA Rennes, ² Thales Nederland B.V.	Beta 7 EuRAD17 Human Activity Monitoring incl. Vital Sign Extraction Chair: Willem A. Hol' Co-Chair: Jürgen Hasch ² 'Thales, 'Robert Bosch GmbH	Beta 8/9 EuRAD18 Imaging by Automotive Radars Chair: Alexander Yarovoy ¹ Co-Chair: Marc Bauduin ² 'Delft University of Technology, ² Interu- niversity Microelectronics Centre (Imed
9:00 9:20	EuRAD13-1 Compact Radar Technology Development for Small Maritime Unmanned Aerial Vehicles Jacco de Wit', Keith T.J. Klein', Matern Otten' 'TNO	EuRAD14-1 Non-automotive Applications of Millimeter-Wave Radars André Bourdoux' INDUSTRIAL KEYNOTE 'imec	EuRAD15-1 Imaging Performance of 79 GHz MIMO Radars: High-Resolution 4D Snapshots, Grid Maps, and SAR Dominik Schwarz ¹ , Timo Grebner ¹ , Christian Waldschmidt ¹ 'Ulm University	11:20 11:40	EuRAD16-1 mm-Wave Joint Sensing and Com- munication System Nima Souzandeh', Mehrdad Harifi Mood', Javad Pourahmadzaar', Sonia Arssa', Serioja Ovidiu Tatu' 'Institut National de la Recherche Scientifique (INRS), 'Concordia University	EuRAD17-1 Continuous People Crowd Moni- toring defined as a Regression Problem using Radar Networks Ronny Gerhard Guendel', Ingrid Ullmann', Francesco Fioranelli', Alexander Yarovoy' 'TU Delft, 'Institute of Microwaves and Photonics (LHFT), Friedrich-Alexander-Universität Erlangen- Nürnberg	EuRAD18-1 Coherent Distributed Automotiv Radar Marc-Michael Meinecke ¹ , Thomas Gisder ¹ , Heiko Gustav Kurz ¹ INDUSTRIAL KEYNOTE ¹ Volkswagen AG
):20 	EuRAD13-2 Surface Clutter Analysis for Detectability Prediction of Buried Objects with a UAV-Based GPSAR Julian Kanz', Alexander Grathwohl', Christian Waldschmidt' 'Ulm University	EuRAD14-2 A Realistic Radar Ray Tracing Simulator for Hand Pose Imaging Johanna Bräunig', Christian Schüßler', Vanessa Wirth', Marc Stamminger', Ingrid Ullmann', Martin Vossiek' 'Friedrich-Alexander-Universität Erlangen-Nürnberg	EuRAD15-2 A New Ground-Based SAR Tech- nique for Roadway Characteriza- tion and Deterioration Inspection Mengda Wu', Laurent Ferro-Famil ² , Frédéric Boutet ¹ , Yide Wang ⁴ "IETR, University of Rennes, ² ISAE-SUPAERO, ³ IETR, Polytech Nantes, University of Nantes	11:40 12:00	EuRAD16-2 Time Domain Analysis of Joint Broadband Radar and Single Car- rier Communication in Frequency Division Multiplexing Winfried Johannes', Stephan Stanko', Ingmar Kallfass ³ 'Irraunhofer FHR, 'Fraunhofer FHR, 'University of Stuttgart	EuRAD17-2 Improved Indoor Semi-Static Human Target Detection and Localization using FMCW Radar Kevin Kaiser', Thomas Stadelmayer', Jens Felgentreff', Robert Weigel', Fabian Lurz', Avik Santra' 'Infineon/ Friedrich-Alexander University Erlangen-Nuremberg, 'Infineon, 'Friedrich-Alexander University Erlangen-Nuremberg, 'Hamburg Univer- sity of Technology	EuRAD18-2 Enhanced Angular Resolution in Automotive Radar Imagery Usin Burg-Aided MIMO-DBS Approac Muge Bekar ¹ , Christopher John Baker ¹ , Marina Gashinova ² ¹ University of Birmingham, UK, ² University of Birmingham, UK
40	EuRAD13-3 ONERA SAR-Light UAV Platform Latest Developments and SAR Results Remi Baque', Nicolas Castet', Jean-François Nouvel', Gilles Duteil-Paulouin', Jérôme Henrion', Olivier Boisot', Xavier de Milly' 'ONERA	EuRAD14-3 A Dataset for Radar-based Traffic Gesture Recognition with Out-of- Distribution Detection Nicolai Kern', Daniel Laqua', Christian Waldschmidt' 'Ulm University	EuRAD15-3 Optoelectronic Multistatic Tera- hertz Imaging FMCW Radar Andreas Keil', Shiva Mohammadzadeh', Lars Liebermeister', Lauri Maximilian Schwenson', Björn Globisch', Robert Kohlhaas', Fabian Friederich' 'Fraunhofer Heinrich Hertz Institute, 'TOPTICA EAGLEYARD	12:00 12:20	EuRAD16-3 Multi-Band Intermodulation RADAR and a New Method to Enhance its Detection Capability Alain Grezes', Jeremy Raoult', Alexandre Martorell' 'Thales SIX GTS, ⁷ IES - University Montpellier	EuRAD17-3 Continuous Human Activity Clas- sification with Radar Point Clouds and Point Transformer Networks Nicolas Kruse', Francesco Fioranelli', Alexander Yarovoy' 'Delft University of Technology	EuRAD18-3 Distributed Automotive Radar Multi-Modal Sensing Anum Pirkani ¹ , Dillon Kumar ² , Mikhail Cherniakor Marina Gashinova ² ¹ The University of Birmingham, ² University of Birmingham
20	EuRAD13-4 Prototyping a Radar Sensor based on a Xilinx RFSoC Device for Detect-And-Avoid Onboard Small UAV Valentine Wasik', Laurent Casadebaig', Benjamin Gabard', Benjamin Gigleux', Loic Castanet', Yoann Paichard', Hervé Jeuland' 'ONERA	EuRAD14-4 Fine Hand Gesture Recognition Using D-band FMCW Radar Salah Abouzaid', Leander Nothelle', Timo Jaeschke ² , Nils Pohl ¹ 'Ruhr-Universität Bochum, ⁷ 2pi-Labs GmbH, ¹ Ruhr- Universität Bochum, Fraunhofer Institute for High Frequency Physics and Radar Techniques	EuRAD15-4 Assessment of Terahertz High Resolution Inverse SAR Imaging both with Compact and Sparse Data Muhammad Amjad Igbal', Andrei Anghel', Iñigo Ederra', Juan Carlos Iriarte', Mihai Datcu' 'University Politehnica of Bucharest, "Universidad Publica de Navarra, "German Aerospace Center (DLR)	12:20 12:40	EuRAD16-4 End-to-End Recognition of Interleaved Radar Emitters from the Spectrogram Stefan Scholl' 'Fraunhofer FHR (Fraunhofer Institute for High Frequency Physics and Radar Techniques FHR)	EuRAD17-4 Contactless In-Bed Movement in Various Scales Classification with CW Radar Hui Lu', Marvin Wenzel ⁹ , Tobias Steigleder ³ , Isabell Klinger ² , Christoph Otsgathe ³ , Alexander Kölpin ⁷ ¹ Brandenburg Technical University Cottbus Senften- berg, 'Hamburg University of Technology, Institute of High-Frequency Technology, 'Universitatsklinikum Erlangen, Department of Palliative Medicine	EuRAD18-4 1 + 1 is Greater Than 2: Collabor tive Automotive Radar Imaging Exploiting Spatial Diversity Shunqiao Sun', Changzhi Li ² ¹ The University of Alabama, Tuscaloosa, AL, USA ¹ Texas Tech University, Lubbock, TX, USA
0:20 0:40	EuRAD13-5 Towards UAV-Based Ultra- Wideband Multi-Baseline SAR Interferometry Victor Mustieles-Perez', Sumin Kim', Christina Bonfert', Gerhard Krieger', Michelangelo Villano' 'German Aerospace Center (DLR), ² Ulm University	EuRAD14-5 Low Power Radar-based Air- Writing System using Genetic Algorithm-assisted Spiking Leg- endre Memory Unit Muhammad Arsalan', Avik Santra', Vadim Issakov² 'Infineon Technologies AG, 'TU Braunschweig	EuRAD15-5 Architecture and Sensor-Level Performance of a 78 GHz Automo- tive Radar System-on-Chip in 22 nm FD-SOI CMOS Markus Gonser', Steffen Doerner', Tilman Gloekler', Philipp Ritter' 'Robert Bosch GmbH	12:40 13:00	EuRAD16-5 Beamforming for a Fast Scanning Phased Array Weather Radar Tworit Dash', Alexandru Girdianu [*] , Oleg Krasnov [*] , Alexander Yarovoy [*] 'TU Delft, *NXP Semiconductors	EuRAD17-5 Interference Free Vital Sign Extraction with Radar Using a Signal Fusion Approach Philipp Stockel', Patrick Wallrath', Reinhold Herschel', Nils Pohl' 'Fraunhofer FHR (Fraunhofer Institute for High Frequency Physics and Radar Techniques), 'BIT Technology Solutions GmbH, 'Ruhr-Universität Bochum, Germany	EuRAD18-5 Implementation of Real-Time Automotive SAR Imaging Marcel Hoffmann ¹ , Theresa Noegel ¹ , Christian Schüßler ¹ , Lars Schwenger ¹ , Peter Gulden ² , Dietma Fey ¹ , Martin Vossiek ¹ ¹ Friedrich-Alexander-Universität Erlangen-Nürnb ² indie Semiconductor

Welcome of Workshop/Short Course Chairs

Welcome to the workshops and short courses of the EuMW 2023 in Berlin! We are thrilled to present an extensive lineup that serves as a pivotal link between academia and industry. Our goal was to curate a compelling program, offering two short courses and an impressive selection of 23 workshops that cover diverse fields within the microwave domain.

We invite scientists and engineers from all disciplines to gain a broader perspective on microwave and RF systems and devices, as well as explore new specializations within our vast field. Aligned with the thematic areas of the EuMC. EuMIC, and EuRAD conferences, these workshops provide a comprehensive overview of emerging microwave systems topics. Participants will have the opportunity to explore cutting-edge subjects, including workshops focused on 6G communication systems, radar application, addressing architectural, system, and technological challenges across semiconductor technologies and integration techniques.

We extend our heartfelt gratitude to the workshop organizers, presenters, and authors who have contributed their expertise at every stage of the conference. Each workshop and short course is individually endorsed by one or more conferences within EuMW, ensuring accessibility for all attendees interested in broadening their understanding of microwave and RF systems and devices.

tive discussion and interaction among participants, fostering valuable networking opportunities. The EuMIC and EuRAD workshops will be concentrated on Sunday and Friday, respectively, while the EuMC workshops are spread across Sunday and Monday. To enhance convenience, electronic slides for the workshops and short courses will be provided at the conference, enabling participants to access them digitally. Please remember that no hard copies of the slides will be distributed. Further instructions for the download process will be shared with registered participants closer to the Once again, welcome to EuMW 2023 in Berlin. We look forward to an inspiring and fruitful week of knowledge sharing

conference date.

FRIDAY 14:00 - 15:40

ROOM Alpha 5/6

EuRAD19 EuRAD Closing Chair: Christian Waldschmidt¹ Co-Chair: Marlene Harter² ¹University of Ulm, ²Offenburg University of Applied Sciences **Closing Remarks** 14:00 Session Welcome 15:10 Christian Waldschmidt Christian Waldschmidt, EuRAD 2023 Chair 14:10 15:20 EuRAD Chair Marlene Harter, EuRAD 2023 TPC Chair

14:10 Improving Radar Based Space Situational Awareness: Recent Technical Concepts for the TIRA and GESTRA Systems 14:55 Christoph Reising

Fraunhofer Institute for High Frequency Physics and Radar Techniques (FHR), Germany

The daily life on earth increasingly relies on services provided by satellites in orbit like communication and navigation. With the rapidly growing number of artificial space objects, it is mandatory to detect, identify and track space objects with highly sensitive radar sensors. For this purpose, the Fraunhofer Institute for High Frequency Physics and Radar Techniques (FHR) is working on two complimentary radar systems: The Tracking and Imaging Radar (TIRA) and the German Experimental Space Surveillance and Tracking Radar (GESTRA). TIRA is fully operated by FHR and is currently the most powerful radar sensor in Europe. The system is in ongoing development to increase its tracking and space reconnaissance capabilities over the next years. The GESTRA system is a phased array system that can cover huge areas of space simultaneously. Development and construction of GESTRA are commissioned by the German Space Agency at DLR. It is going to be fully operational during 2023. In order to establish a multistatic radar network, construction and further development of additional transmit and receive units are already underway. The new capabilities of TIRA and the GESTRA network will provide a significant contribution to global space situational awareness activities in the future. In this Plenary Talk, the above-mentioned status will be presented in a more precise way and based on this, future

14:55 Awards Ceremony Michael Gadringer

15:10

FuMW 2023 Awards Chai

FuRAD Prize EuRAD Young Engineer Prize

potential trends shall be sketched up.

Invitation to EuRAD 2024 15:20

Guido Valerio EuRAD 2024 Chai

15:30

NILS POHL Workshop & Short Course Chair Ruhr University Bochum, Germany

JAN WESSEL Workshop & Short Course Co-Chair Fraunhofer FHR, Germany

During the sessions, we encourage ac-

and collaboration in the field of microwave technology all in the mission of "waves beyond walls".

SC1

EuMIC

SUNDAY 09:00 - 18:20

Fundamentals of Microwave PA Design

Chair: Paolo Colantonio

Co-Chair: Rocco Giofrè² ¹University of Roma Tor Vergata, ²University of Roma Tor Vergata

Room: Beta 1/2

Semiconductor Power Amplifiers are key components in radio frequency and microwave transmitter systems. They have received a great deal of attention and development effort over the last decades and are still a hot topic in research area. This short course aims to provide a comprehensive overview of all aspects of fundamental semiconductor microwave power amplifier design. It is an introductory course, aimed at graduate engineers who have moved into the field of RF design, as well as to microwave designers who aim to deeply understand the power amplifier basic concepts. This short course features a range of presentations and will provide a comprehensive overview and basic understanding on recent important progress and novel state-of-theart achievements in semiconductor power

Semiconductor Devices for PAs

Design and Model Oriented Load

PA Theoretical Foundation

amplifiers. Very recent advances in semiconductor amplifiers and their applications will also be covered.

Starting from the fundamental concepts on semiconductor devices, the core of a power amplifier design, the theoretical foundations of a power amplifier design are discussed. It will include fundamental concepts and state-of-the-art results on actual designs of a range of semiconductor power amplifiers using existing foundries. The load pull technique is also addressed and focused on the designer perspective.

The presentations will also cover a variety of advanced topics, and will provide the attendees with a clear overview of the main streams of current and important research trends worldwide in this field, as the Doherty architecture and the more recent load

modulation power amplifier design concepts. The short course will also focus on the major challenges, such as stability (small and large signal) and how to address these in amplifier design. Finally, accounting for the linearity issue, a basic overview on linearization techniques and their adoption to properly mitigate the amplifier distortion effects will conclude the short course.

SUNDAY 09:00 - 13:00

Wideband Microwave Measurements of Multi-Port Devices on VNA-Type Measurement Systems

Chair: Olof Bengtsson Co-Chair: Gian Piero Gibiino² ¹Ferdinand-Braun-Institut (FBH), ²University of Bologna (UNIBO) Room: Gamma 6

The half day short course is mainly targeting Ph.D. students working on PA characterization and linearization. It addresses calibrated multiport wideband measurements with analysis bandwidths exceeding several GHz conducted on mixer based VNA-type systems. In a series of presentations, the VNA architecture, its development to the general versatile multi-tool it is today, and the possibility to adapt it for very wideband measurements are presented. Wideband signal generation, capturing and synchronization is covered as well as calibration methods for IF and RF correction. Alternative methods for IF bandwidth extension like stitching are also introduced. The course covers alternative measurement applications including wideband active load-pull, mixers, multiple-input PAs and full MIMO systems.

The advantaged and disadvantages of VNA based architectures and their limits are also discussed compared to other oscilloscope or mixer-based solutions. The two final talks of the short-course offer hands-on demonstrations going through the wideband calibration and conducting realtime measurements on the wideband-MIMO measurement system at FBH. The participants will be guided through live chip measurements of GaN-HEMT amplifiers. They will learn how a system can be configured and calibrated to present the targeted wideband signals at the calibrated interfaces including pre-amplifier linearization. Step-by-step it is shown how calibrated wideband measurement of a multiport device can be conducted, what results can be expected, and how these results can be used in e.g. device

PROGRAMME

The PNAX, a Modern Vector Network Analyzer (VNA)

loel Dunsmore ¹Keysight technologies

Application of VNA Wideband Functionalities to Active Device Characterization

Gian Piero Gibiino¹ ¹University of Bologna (UNIBO)

Configuration and Calibration of the FMD 5G-MIMO System at FBH Olof Bengtsson¹

¹Ferdinand-Braun-Institut (FBH)

Demo: Setup and Calibration of the 5G-MIMO System at FBH Christoph Schulze¹

¹Ferdinand-Braun-Institut (FBH)

Demo: Calibrated Wideband Measurements on a Multiport GaN Amplifier Mattia Mengozzi

¹University of Bologna (UNIBO)

PROGRAMME

X-Parameters High-Power PAs Modeling for System Level Analysis

Alessandro Cidronali¹ University of Florence, Italy

Linear and Nonlinear Stability Analysis of Power Amplifiers Giorgio Leuzzi¹ ¹University of L'Aquila, Italy

Linearization Techniques Overview Pere L Gilabert ¹Universitat Politècnica de Catalunya (UPC-Barcelona Tech.), Spain

Balanced PAs: An Old Trick Revival

The Doherty Power Amplifier

Roberto Quaglia¹, Aleksander Bogusz¹ ¹Cardiff Univeristy, UK

Iltcho Angelov

Franco Giannini¹

Marco Pirola ¹Politecnico di Torino (Italy)

Rocco Giofrè

¹Chalmers University, Sweden

¹University of Roma Tor Vergata, Italy

Pull Techniques

¹University of Roma Tor Vergata, Italy

SC2

EuMIC/

EuMC

benchmarking and model verification. All participants of the short course are invited to register for a visit at the Ferdinand-Braun-Institut (FBH) in Adlershof, Berlin, to get a live demonstration of the wideband measurements system on Monday 18th of September" The visit and hands-on demonstration if free of charge and only offered to short course attendees. Please contact Olof Bengtsson (olof.bengtsson@fbh-berlin.de) for more information.

WS1

EuMC

SUNDAY 09:00 - 18:20

Broadband and Microwave Signal Processing **Using Electronic-Photonic Integration**

Chair: Johann Christoph Schevtt¹

Co-Chair: Jeremy Witzens² ¹Paderborn University, ²RWTH Aachen University

Room: Beta 7

In recent years, tremendous progress was made in photonic and electronic-photonic integration technologies. Especially the underlying semiconductor technologies such as silicon photonics and InP photonics have advanced considerably. So far, the major driving force for electronic-photonic integration has been fiber-optic communication. However, many other high frequency applications can greatly benefit from combined electronic-photonic signal processing and integration, such as e.g. mm-wave/THz communications and sensing, ultra-broadband data converters, ultra-low-noise frequency synthesis, and large-scale microwave phased-array transceivers. The workshop

covers recent developments and applications of broadband and microwave signal processing using discrete and integrated electronic-photonic circuits and systems.

PROGRAMME

Ultra-Broadband Photonic-Electronic Analogue-to-Digital Converters (ADCs)

Dengyang Fang¹ ¹Karlsruhe Institute of Technology, Germany

Orthogonal Sampling Based Broadband Photonic Assisted ADC and DAC with Low-Bandwidth Electronics

Thomas Schneider 'TU Braunschweig, Germany

Optoelectronic Frequency Synthesis with Extreme Low Phase Noise Using Mode-Locked Lasers Meysam Bahmanian ¹Paderborn University, Germany

Low Phase Noise Microwave Signal Generation with Optical Frequency Combs Yann LeCog¹ 'SYRTE, France

Photonic-Electronic Ultra-Broadband Signal Processing: Devices, Concepts, and Applications

¹Karlsruhe Institute of Technology, Germany

Christian Koos

Microwave Photonics for 5G Networks and Radar and Sensing Applications lerome Bourederrionnet¹ Thales Research and Technology, France

Photonic-Assisted Microwave Near-Field Imagers Firooz Aflatouni¹ ¹University of Pennsylvania, USA

Microwave-Photonics Processor Chris Roeloffzen¹ ¹LIONIX International Netherlands

Electronic-Photonic Integrated Sensor Platform Denis Taz¹

¹FAU Erlangen-Nuremberg, Germany

Photonic Neuromorphic Systems

Andrea Zazzi

¹RWTH Aachen University, Germany

SUNDAY 09:00 - 18:20

Terahertz Device, Circuit and System **Fundamentals and Applications**

Chair: Dimitris Pavlidis¹ Co-Chair: Imran Mehdi² ¹Florida International University, ²Jet Propulsion Laboratory Room: Beta 5

The workshop will provide the opportunity to new generations of scientists and engineers to learn about the unique features of Terahertz technologies, while at the same time addressing the latest achievements in the field. THz applications to be discussed extending among from sensing and spectroscopy to communications and imaging. The workshop will bring together experts from various academic, national labs and commercial enterprises to discuss the most recent advances in their respective fields and to provide insight into what the future might hold for exploration of this frequency range. It will focus on a variety of materials such as traditional III-Vs, III-Nitrides, Silicon,

Graphene and Transition metal dichalcogenides (TMDs), as well as various device concepts for efficient THz generation and detection. The operation of the components to be discussed is based on plasmonics, photoconductors, plasma waves, photomixing, Resonant Tunneling, Negative Differential Resistance, CMOS and High-Electron Mobility Transistors. Devices such as Quantum Cascade Lasers. Self-switching Diodes and Uni-Traveling-Carrier Photodiodes and nanoscale Vacuum Transistors will also be addressed. Advanced Sensing, Imaging and Communications and terrestrial, space applications will be discussed. The Workshop is intended for young scientists and engineers

PROGRAMME

¹Jet Propulsion Laboratory

THz Applications: From Devices to Space Systems Imran Mehdi¹

Nitride-based Two- and Three-Terminal Devices for THz Applications

Dimitris Pavlidis ¹Florida International University

On the Practical Limitations for the Generation of sub-THz Gunn Oscillations in Highly Doped GaN Diodes lavier Mateos ¹University of Salamanca

InP HBTs for THz Microsystems Zach Griffith ¹Teledyne Scientific Company

RF Injection Locking of THz Metasurface Quantum-Cascade Lasers

Reniamin Williams ¹University of California Los Angeles THz Photonic Devices Guillaume Ducournau ¹University of Lille

Terahertz Silicon Photonics towards 6G and beyond Masavaki Fuiita¹ ¹Osaka University

Recent Advances in CMOS-Based THz Radar Imaging: Towards Millimeter Ranging Resolution and Electronic 2D Beam Steering with 1-Degree Angular Resolution Ruonan Har

Temporal Quantitative Detection of Water Contents with THz Technology

Marion K. Matters-Kammere ¹Eindhoven University of Technology

who are interested in learning about this emerging field, as well as individuals with a more advanced understanding of related concepts. The topics addressed include fundamental and engineering considerations together with the latest results in Terahertz technology.

Resonant Tunneling Diode Technology for Future THz Applications

Safumi Suzuki¹ ¹Tokyo Institute of Technology

Terahertz Antenna Design Using 2D Materials

Oammer H. Abbasi¹ ¹University of Glasgov

A New Probing Approach for Millimeter-Wave and Terahertz Devices

Guillermo Carnintero ¹Universidad Carlos III de Madrid, Leapwave Technologies SL

GaAs THz planar Schottky diodes for Future Space Missions

Jeanne Treuttel¹ ¹Observatoire de Paris - PSL / LERMA **WS3**

EuMIC

SUNDAY 09:00 - 13:00

Highly-Integrated mm-Wave Circuits and Systems for Emerging Radar Applications

Chair: Vadim Issakov

Co-Chair: Justin Romstadt² ¹TU Braunschweig, ²Ruhr University Bochum

Room: Beta 3

This half-day workshop will cover the latest achievements in design and characterization of the millimeter-wave (mmWave) broadband integrated differential circuits. The amount of new applications based on millimeter-wave radar sensors is continuously growing. Driven by the demand for cost reduction, module size reduction, lower power consumption and complexity of usage for the end user. several trends can be observed recently. First, the operating frequencies keep on increasing, enabling integration of antenna arrays in package and on-chip. Secondly, the increasing level of integration enables advanced functionality. Finally, with the emerging applications operated from a battery, ultra-low-power operation is required.

In this workshop, we discuss these recent

trends in the design of mm-Wave transceiver front-ends for radar applications and give examples of radar systems at mm-wave frequencies providing system-level solutions. Particularly, some talks focus on radar gesture applications. Other talks discuss considerations for consumer and industrial applications. The electrical requirements are resolved by various modulation techniques FMCW or PMCW, or even combination of hoth

In this workshop we have a good mixture of industry/research institutes (Infineon. Silicon Austria Labs) and academia (FAU Erlangen, Ruhr University Bochum, TU Braunschweig. Tel Aviv University). As well, we have contributions from three different countries (Austria, Germany and Israel) by experts and recognized speakers in the field

PROGRAMME

140 GHz CMOS PMCW Radar Tx-Frontends for Gesture Recognition

Andre Engelmann¹, Florian Probst¹, Albert-Marcel Schrotz¹ ¹Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

D-Band Transceiver Front-End for Consumer Radar Applications using on-Chip Radiators

Vincent Lammert¹, Vadim Issakov¹ ¹TU Braunschweig, Germany

Design and Development of a Wideband and Efficient Radar Transceiver at 256 GHz Ragibul Hasan¹, Corrado Carta¹

¹IHP Microelectronics, Germany

Circuit And Design Considerations for Scalable MIMO D-Band Radar MMICs Justin Romstadt ¹Ruhr University Bochum, Germany

mm-Wave Radar for Short and Ultra-Short Distance

Yun Fang¹, Hao Gao² ¹Silicon Austria Labs, Austria, ²Eindhoven University of Technology, The of radar circuits and systems.

SUNDAY 09:00 - 13:00

Joint Communications and Sensing

Chair: Benjamin Nuss¹

Co-Chair: Norman Franchi² ¹Karlsruhe Institute of Technology, ²FAU Erlangen-Nuremberg Room: Beta 6

Joint communications and sensing (JCAS) is one of the hot topics that is currently discussed in the research and development for 6G. It offers the possibility to reuse the spectrum that is primarily used for communications to sense the environment, for example, to control and supervise intra-logistic facilities within campus networks or to increase the safety in traffic scenarios or at airports. However, there are still many open questions that have to be answered and solved before such ICAS systems can come to market. Some of these questions are, for example, how the hardware and protocols have to be adapted to enable sensing and which additional algorithms and signaling overhead is required and can be tolerated. In addition, the question is, which use cases are of interest for the mobile and campus

network operators and what parameters have to be extracted by the sensing. Coming along with these questions, also possibilities to test and verify the newly developed algorithms and sensing schemes are required which will be tackled by several demonstrators and measurement facilities that are currently under development in several research projects.

The workshop will provide a platform for the participants to highlight challenges coming along with JCAS, exchange possible ideas to solve them, and present their latest research.

PROGRAMME

JCS from the Perspective of the Physical Layer: Limitations and Possibilities Lara Wimmer¹

¹IHP Microelectronics, Frankfurt Oder, Germany

First Steps of JCAS Hardware Reuse Padmanava Sen¹

¹Barkhausen Institut

Joint Communication and Sensing with Tag Based mmWave Harmonic Radar: Concepts, Chip Design and Measurement Results

Steffen Hansen¹ Tohias T Braun ¹Fraunhofer FHR, ²Ruhr-Universität Bochur PMCW-Based JCAS Systems: A Tutorial on Signal Processing Schemes and RF Hardware Impacts Yanpeng Su¹ ¹Friedrich-Alexander-Universität Erlangen-Nürnberg

Broadband mmWave MIMO Testbed for 6G and ICAS Benjamin Nuss¹

¹Karlsruhe Institute of Technology

BiRa - Wideband Bi-Static Reflectivity Measurement System for ICAS Carsten Andrich¹ ¹TH IImenau

Radar-based Gesture Recognition Using Artificial Intelligence Yanhua Zhao

¹IHP Microelectronics, Frankfurt Oder, Germany

from academia and industry to exchange

ideas, discuss challenges, and identify fu-

ture research directions in heterogeneous

integration.

SUNDAY 14:20 - 18:20

Heterogeneous Integration for Next Generation of Communication and Sensing

Chair: Nadine Collaert¹ ¹imec Room: Beta 6

Heterogeneous integration is ubiquitous and considered a key enabling technology across different applications. It enables the integration of different types of semiconductor devices and materials into a single package or system, resulting in improved system performance and energy efficiency. To achieve heterogeneous integration,

various approaches have been considered. including 2.5D interposer, 3D wafer-level integration (W2W and D2W), and sequential 3D integration. Each of these processes has its challenges and benefits, and they have been extensively explored for logic and memory applications. However, there is a growing need to implement these processes for wireless and photonic component technologies, which have different requirements and challenges.

The integration of wireless and photonic components is particularly important for the development of advanced communication systems, such as 5G wireless networks and data centers. Heterogeneous integration can enable the integration of different wireless and photonic components, such as power amplifiers, antennas, modulators, and detectors, into a single package or system. This integration can lead to improved performance, reduced size, and lower power consumption.

This workshop on heterogeneous integration will provide an overview of the latest advancements in this field. The workshop will cover topics such as materials and processes. device fabrication. circuits demonstrators, testing and characterization. The goal of the workshop is to bring together experts

PROGRAMME

Materials and Technologies for Heterogeneous Integration Michael Töpper ¹Fraunhofer

Recent Developments in Ad- vanced Heterogeneous Wafer-
Level Integration
Jean-Charles Souriau ¹
'CEA

3D Sequential	Integration for RF
Applications	-
Anne Vandooren ¹	
1imec	

Hetero-integrating InP-HBT Circuits with BiCMOS on Chip Level for sub-THz Frequencies Wolfgang Heinrich¹

SUNDAY 14:20 - 18:20

mm-Wave Integrated Radar Circuit Design and SoC Integration in Silicon Technologies

Chair: Sönke Vehring Co-Chair: Jan Schöpfel² ¹Robert Bosch GmbH, ²Ruhr University Bochum Room: Beta 3

Next generation radar sensors require multiple transmitter and receiver front-ends combined with a high computation power on a single chip at lowest possible costs. Nowadays, silicon exhibits sufficient mm-wave performance to co-integrate mm-wave frontends with high performance controllers and digital signal processors. However, the mm-wave circuit design in silicon remains a challenge. Typical challenges are highresolution phaseshifters, reliability in power amplifiers, or chirp-linearity. One emerging new field due to progressive SoC integration is the opportunity of complex build-in-selftest algorithms. Furthermore, the high integration brings up new challenges for the lab sample characterization.

The workshop combines top academic and industry speakers with a breadth of expertise

PROGRAMME

mm-Wave Circuit Design, SoC Integration, and Lab-Sample Verification in 22 nm FD-SOI CMOS Technology Sönke Vehring¹ ¹Robert Bosch GmbH

120 GHz MIMO CMOS Transceiver for High Volume Applications Wojciech Debski¹

¹Indie Semiconductors

Circuits and System Concepts for MIMO OFDM Radar at 77 GHz Jan Schöpfel¹ ¹Ruhr University Bochum

Highly Efficient Scalable mm-Wave Radar Transceiver Frontend ICs Sütbas Batuhan¹

¹IHP Microelectronics

and experience in this field ranging from the fundamental aspects of mm-wave circuit design, technology, SoC-integration, and same ple verification.

SUNDAY 14:20 - 18:20

Design, Linearization, and Optimization **Techniques for Multiple-Input Power Amplifiers**

Chair: Gian Piero Gibiino Co-Chair: Pere L. Gilabert²

¹University of Bologna (UNIBO), ²Universitat Politècnica de Catalunya (UPC-Barcelona Tech.)

Room: Gamma 6

Power amplifier performance at radio and millimeter wave frequencies is critical for the successful deployment of 5G and 6G communication systems. In order to meet the challenges of broadband linearity and energy efficiency, multiple-input PA topologies such as supply modulation, dual-input Doherty, and load-modulated balanced amplifiers have emerged as promising solutions. During this workshop, we will explore the design challenges and optimal control techniques, including digital predistortion and linearization, for multiple-input PAs. The use of machine learning in these approaches will also be discussed. Attendees will come away with a better understanding of the state-of-the-art approaches for improving power amplifier performance in the context of 5G and 6G communication systems.

PROGRAMME

Dual-Input Load Modulated Power Amplifiers for Advanced Transmitters

Aleksander Bogusz¹, Roberto Quaglia¹, Jeff R. Powell², Jonathan Lees³, Steve C. Cripps³ ¹Cardiff Univeristy (UK), ²Skyarna Ltd, ³Cardiff University

RF Power Amplifier Architectures for Wideband Operation at High Efficiency in Cellular Base Stations

Marc Cope¹, William Thompson¹, Anis BenArfi¹, Noureddine Outaleb¹ ¹Analog Devices

Dual-Input GaN Power Amplifiers Enabled by AI Machine Learning

Shintaro Shinjo¹, Shuichi Sakata¹, Yuji Komatsuzaki¹ Mitsubishi Electric Corporation

Linearization and Global Optimization Techniques for Multi-Input RF Power Amplifiers Mattia Mengozzi¹, Gian Piero Gibiino¹, Alberto Maria Angelotti², Olof Bengts-son³, Corrado Florian², Alberto Santarelli², Paolo Colantonio⁴ ¹University of Bologna (UNIBO), ²University of Bologna, ³Ferdinand-Braun-Institut (FBH), ⁴University of Roma Tor Vergata

Dual Input PA Control and Linearization for Maximizing Efficiency

Wantao Li¹, Gabriel Montoro¹, Pere L. Gilabert²

¹Universitat Politècnica de Catalunya, ²Universitat Politècnica de Catalunya (UPC-Barcelona Tech.), Spain

SUNDAY 14:20 - 18:20

Polarization Surfaces for Next-Generation **Communications Systems**

Chair: Emilio Arnieri¹ Co-Chair: George Goussetis² ¹University of Calabria. ²Heriot-Watt University Room: Beta 4

Frequency selective surfaces (FSSs) have garnered considerable attention from researchers in the last years because of their numerous applications like the realization of spatial filters, radomes, absorbers etc. FSS can also be designed to manipulate the polarization of electromagnetic (EM) waves in desired directions. Circularly polarized (CP) waves are widely used in wireless communications because are more robust to multipath and Faraday rotation effects compared to the linear polarization (LP) case. Polarization converters provide a valuable method to generate CP waves without affecting the complexity of the antenna system. In this workshop, we will discuss the state of the art of polarization surfaces. Several design examples will be discussed for both reflection and transmission-type surfaces.

Particular emphasis will be given to the main design techniques based on equivalent circuit models and sophisticated optimization procedures.

PROGRAMME

Analysis and Design of Multilaver Metasurface Polarizers for Satcom Applications

¹Michigan State University, USA

Mauro Ettorre¹

Equivalent Circuit Models for the Characterization Linear-to-Circular Polarizer Surfaces

Emilio Arnieri¹ ¹University of Calabria, Italy

Wide-/Dual-Band Linear-to-Circular Polarization Converter and its Application in Antenna Hong Bin Wang¹

¹University of Electronic Science and Technology of China, China

Information Metasurfaces

Tie Jun Cui¹, Wankai Tang², Jun Yan Dai¹ ¹State Key Laboratory of Millimeter Waves School of Information Science and Engineering Southeast University, Nanjing, China ²National Mobile Communications Research Laboratory Southeast University Nanjing, China

SUNDAY 14:20 - 18:20

RF Packaging and IC Integration for Communication and Radar Applications above 100 GHz

Chair: Ivan Ndip ¹Fraunhofer IZM Room: Gamma 7

In this workshop, experts from industry and academia will present the latest developments on RF packaging, IC development and antenna integration, especially for wireless communication and radar sensing applications above 100 GHz. At IC level, the focus will be on SiGe BiCMOS technology. A SiGe-based D-band transceiver with significantly improved dynamic range will first be presented. This will be followed by a presentation of recent developments of Infineon's SiGe BiCMOS technology and process design kit for mm-Wave monolithically integrated circuits. Transitions from these ICs to waveguides will be discussed. We will move on to present the challenges in RF packaging

and system-integration of ICs at frequencies above 100 GHz, considering the packaging of 6G phased arrays as an example. Examples of RF packaging solutions and materials required at these frequencies will be discussed. Finally, the integration of antennas operating above 100 GHz and their co-design with ICs and packages will be presented.

PROGRAMME

Highly Integrated D-Band Transceiver for Low-Cost Radar Applications

Ahmet Çağri Ulusoy¹ ¹Karlsruhe Institute of Technology

SiGe BiCMOS Technology and Circuits for mm-Wave Applications Klaus Aufinger

Infineon Technologie:

Transitions to a Waveguide Suitable for Integration with Large Size MMICs Vessen Vassilev

¹Chalmers University of Technology

Antenna Integration and Packaging Challenges for 6G Millimetre-Wave Phased Arrays Chantal Liao¹

¹Ericsson

RF Packages with Integrated Antennas above 100 GHz Uwe Maaß¹

¹Fraunhofer IZM

RF Si Interposer Enabling Heterogeneous Integration Opportunities for Wireless System Xian Sun¹

Glass Substrates as a Packaging Platform for Applications above 100 GHz Martin Letz¹ 'SCHOTT

On-chip and Embedded in Package Antennas Beyond for mm-Wave Applications Vadim Issakov¹

TU Braunschwei

MONDAY 09:00 - 18:20

Millimeter-Wave On-Wafer Measurement and Material Measurement for Future Communications and Automotive Radar Sensors

Chair: Xiaobang Shang¹ Co-Chair: Nick Ridler ¹National Physical Laboratory (NPL)

Room: Beta 1/2

This full-day workshop will cover the latest developments in millimeter-wave (mm-wave) measurements, including on-wafer S-parameters as well as complex permittivity of dielectric materials. Such measurements play a crucial role in the development of planar circuits for next generation communication systems and automotive radar sensors. The workshop consists of ten talks, five of which relate to S-parameters and the remainder to dielectric measurement. The presenters are from different scientific backgrounds (i.e. metrology institutes, instrumentation manufacturers, and end-users in industry and academia), and therefore will provide different perspectives on these topics.

For material measurement, the talks will focus on different types of popular measurement techniques, including the free-space guasi-optical method, the guided free-space method, and the transmission line method based on substrate-integrated waveguides, etc. The topics covered for on-wafer measurement include the selection of calibration techniques, the design of calibration substrates, corrections for probe-to-probe leak age, and compensation technique for probe misplacements, etc. Through the workshop, participants are expected to learn more about the state-of-the-art in mmWave measurement techniques and gain insight into future developments.

PROGRAMME

Review of Millimeter-Wave Material Characterisation Using a Guided Free-Space Method (MCKs) Xiaobang Shang¹, Nick Ridler

¹National Physical Laboratory (NPL), UK

Extraordinary Permittivity Characterization Using 4H-SiC Substrate-Integrated Waveguides and Resonators

James C. M. Hwang¹ ¹Cornell University, USA

Optimization of a Free Space Test Bench in the J-Band (220-330 GHz) for Material Characterization Grégory Gaudin¹, Daniel Bourreau¹, Alain Peden

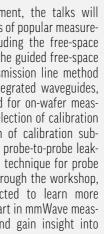
¹IMT Atlantique, France

Nanorobotics-Based Millimeterwave Techniques and Instrumentations for Multi-Scale Material Characterization Kamel Haddad

¹University of Lille, France

Broadband Methods for the Characterization of Transmission Lines and Material Parameters at Millimeter-Wave Frequency Bands

Enrique Márquez-Segura¹ ¹Universidad de Málaga, Spain


Your Keys to the Successful RF Calibration of the mmWave Wafer-Level Measurement System Andrei Rumiantsev

¹MPI Corporation, Germany

WM1

EuMC

Guidelines and Recommendations for Traceable On-Wafer S-Parameter Measurements

Gia Ngoc Phung¹, Uwe Arz¹ ¹PTB, Germany

Challenges of On-Wafer S-Parameter Characterization of Advanced SiGe HBTs at Very **High Frequencies**

Sébastien Fregonese¹, Thomas Zimmer ¹University of Bordeaux, France

Correcting Probe to Probe Leakage with a Dummy On-Chip Device Chong Li¹

¹University of Glasgow, UK

Compensation of Probe Misplacements in On-Wafer S-Parameter Measurements

Robin Schmidt¹ ¹Keysight Technologies, Belgium

5G/6G

Chair: Lin Lin¹

¹lahil

Co-Chair: Jared Kantor¹

MONDAY 09:00 - 13:00

MONDAY 09:00 - 18:20

Measurement Methods for Passive Intermodulation and Environmental Testing of **Electronic Circuits**

Chair: Martin Salter¹ Co-Chair: Ahmed Sayegh²

¹National Physical Laboratory, ²Physikalisch-Technische Bundesanstalt (PTB) Room: Beta 3

Telecom equipment manufacturers, telecom operators and regulators face everincreasing customer demands for higher data rates and power consumption. Among other things, problems in communication systems are increasing due to passive intermodulation (PIM) in telecommunication base stations, since more power and larger bandwidths are required to transmit higher data rates, but also the diverse use of RF components places high demands on the reliability of the components under different environmental conditions. In the first half of this workshop, therefore, methods and analysis procedures that are required to measure passive intermodulation will be presented. In particular, traceable measurements of passive intermodulation, precise high-power measurements, and theories

of nonlinear components using mixed frequency S-parameters are highlighted. In the second part, the focus is on methods for analyzing the effects of environmental conditions. For applications such as autonomous vehicles, it is expected that future communication systems will often be deployed under relatively harsh environmental conditions, such as at temperatures above or below ambient temperature and at low or high humidity levels. It is therefore important that methods are developed to assess the impact of these various environmental conditions on the operation of the electronic circuits comprising such communication systems. This workshop will discuss test methods that are being developed and implemented to study the effects of environmental influences on electronic circuits, including both

PROGRAMME

Detecting PIM Sources for Better 4/5G Mobile Network Perfor-

mance

Christian Entsfellne Rosenberger

Uncertainty Budget for PIMmeasurements

Ahmed Sayegh¹ ¹Physikalisch-Technische Bundesanstalt (PTB)

Sources of Uncertainty Related to Variable Environmental Conditions for RF Testing Activities Martin Garcia-Patron¹

¹INTA (Instituto Nacional de Técnica Aeroespacial)

Mixed Frequency S-Parameter

Holger Heuerman ¹EH Aachen

Panel Session on Measurement Methods for Passive Intermodulation

Christian Entsfellner¹, Ahmed Sayegh², Martin Garcia-Patron³, Holger Heuermann⁴

¹Rosenberger, ²Physikalisch-Technische Bundesanstalt (PTB), ³INTA (Instituto Nacional de Técnica Aeroespacial), ⁴FH Aachen, University of Applied Sciences

PCB Reliability Testing Methods Martin Wickham¹ ¹National Physical Laboratory (NPL)

PCB Connector Launch Design

Bill Rosas¹ ¹Signal Microwave

Design and Testing of an FR-4 Based Reference PCB for Environmental Testing of Electronic Circuits Lewis Manning¹ ¹National Physical Laboratory (NPL)

aging effects and effects on in-operando performance.

Environmental Age Testing and

ing of RF PCBs: Some Prelimi-

Panel Session on Environmental

Testing of Electronic Circuits

Martin Salter¹, Martin Wickham¹, Bill Rosas², Lewis Manning¹, Osman

¹National Physical Laboratory (NPL), ²Signal Microwave, ³Institute of Metrology of Bosnia and Herzegovina (IMBiH)

¹Institute of Metrology of Bosnia and Herzegovina (IMBiH)

nary Results

Osman Siboniic

Environmental In-Operando Test-

Room: Beta 8

It is clear by now, mMIMO radio is one of the most successful technologies came along with 5G. Radio frontend behavior is rarely ideal and consistent. It also varies with temperature and other factors. For beamforming, almost all mMIMO radios need to be calibrated either in real time or in production. Many papers have been published on this. But it is still a subject with many unanswered questions in both theory and practice. Below, is a list of questions we have been working on.

1.Transceiver calibration is a process of uncertainty removal using input-output data and followed by behavior correction. Can we establish a unified framework for all mMIMO radio calibration problems, including FR1, FR2, phased-array, true-delay-array, real-time, in factory, etc.?

2. Given a performance target and a priori knowledge of the radio behavior, what is the least amount of calibration data and the simplest compensation function needed to make radio fall into design specification? 3. How can calibration data be acquired guickly and accurately in real-time and factory calibration? (Calibration of an FR2 radio can take hours if one chooses to use a brute force method like REV.) 4. How can we do factory calibration in a low-cost compact OTA chamber efficiently? 5. For factory calibration in OTA chambers. is boresight calibration enough for all beam forming requirements? How can we speed up calibration when it is not? 6.For real-time calibration, how can we get feedback signals reliably? Do we need to calibrate feedback network?

PROGRAMME

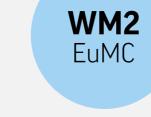
A Novel OTA Near-Field Measurement Approach Suitable for mmWave Array Characterization and Calibration Thomas Deckert¹

¹National Instruments, Germany

Multi-Probe Enabled mMIMO Calibration and Diagnosis Wei Fan¹

¹Aalborg University, Denmark

Fast mmWave Antenna Array Calibration Harish Krishnaswamy¹


28 GHz Phased Array Antenna Module with Analog Optimized **Design to Relieve Calibration** Effort Yoshiharu Fujisaku ¹Fujikura, Japan

Code-Domain Techniques and its **Dynamic Range Requirements** Gabriel M. Rebeiz¹ ¹UCSD, ECE Department, USA

A Unified Framework for Antenna Array Calibration

Lin Lin¹ ¹Jabil, Ja

mMIMO Active Antenna System Calibration for

In this workshop, we will have presentations from industry and academia to address these issues.

Phased-Array Calibration using

MONDAY 09:00 - 13:00

Technology for RF/MW and Pulsed Power **Bioelectromagnetics**

Chair: Michal Cifra¹

Co-Chair: Francesca Apollonio²

¹Institute of Photonics and Electronics of the Czech Academy of Sciences ²Sapienza University or Rome

Room: Gamma 6

The workshop will highlight progress in technology for intense pulsed electric and RF/MW signals for the modification of function of organisms on the cellular and molecular scale. The talks will cover the recent development of unique high voltage ultrashort pulse generators as well as methods for the integration of RF chips to advanced optical microscopies. These experimental platforms leverage RF&MW engineering to uncover so far unseen non-thermal effects of short intense electric pulses. The systems for pulsed microwave treatment of biological cells and approaches for decyphering thermal and nonthermal effects will be also covered. Finally the workshop will highlight advances in the design of MW exposure systems related to new generation of bioelectromagnetic experiments.

PROGRAMME

Sub-Nanosecond Intense Pulsed **Electric Fields Technology for Biological Applications**

Delia Arnaud-Cormos¹ ¹XLIM Research Institute, University of Limoges, France

Agile High Voltage High Frequency Sources for On-Chip Cell Manipulation

Cristiano Palego¹ ¹Bangor University, UK

On-Microscope RF Chips for Intense Pulsed Electric Field Manipulation of Biomolecular Systems

Michal Cifra¹, Daniel Havelka ¹Institute of Photonics and Electronics of the Czech Academy of Sciences, Czech Republic, ²Institute of Photonics and Electronics, Czech Academy of Sciences, Czech Republic

Fundamental Interactions of Cells with Electromagnetic Fields Heungjae Choi¹

¹Cardiff University, UK

The Next Generation of MW Exposure Systems in 5G Related **Bioelectromagnetic Experiments** Francesca Apollonio¹

¹Sanienza University or Rome, Italy

MONDAY 09:00 - 13:00

SiGe BiCMOS Technologies as Enabler for D-Band Applications and Beyond

Chair: Andreas Mai Co-Chair: Réne Scholz Room: Gamma 7

In recent years, the demand for rf semiconductor technologies that can be manufactured on a large scale has been steadily increasing. SiGe BiCMOS is one of the main contenders in the area of mm and sub-mmwave applications due to the large performance potential of SiGe HBTs. State-of-theart SiGe HBTs have demonstrated maximum oscillation frequencies up to 0.7 THz addressing applications in D-band and beyond. The workshop presents the current status and roadmaps of various SiGe BiCMOS technology developments in Europe. These technologies make an important contribution to European technology sovereignty in semiconductor industry. Beside recent research results, the potential for foundry offers and large-scale IDM processes will be presented by various companies. Applications

such as high frequency signal generation for advanced measuring scopes and radar frontends up to 300GHz will be presented by leading representatives of these fields.

PROGRAMME

XB012 – Evolution of RF-SOI with SiGe Gregory Uren¹ ¹XFAR

130 nm SiGe BiCMOS Technology for mm and sub-mm Wave Applications

90 nm 500 GHz fmax SiGe BiC-MOS Technology for mm-Wave Applications

Josef Boeck¹

BiCMOS DAC Circuits for Signal Generation in T&M Equipment Radu Fetche¹ ¹Rohde & Schwarz

Design of 300 GHz Transceiver Front-End in IHP's SG13G2 Technology Srdjan Glisic¹

¹Indie semiconductor (Silicon Radar)

Holger Rücker

MONDAY 14:20 - 18:20

REAL Base Station and Related Device Techniques for 5G and Beyond 5G mm-Wave Systems

Chair: Kenjiro Nishikawa¹ Co-Chair: Kazuya Yamamoto²

¹Kagoshima University, ²Mitsubishi Electric Corporation Room: Gamma 7

More than three years have passed since 5G services started in several country's carriers. 5G sub-6 GHz services, so-called FR1 services, are rapidly becoming popular in cellular communications. However, 5G mmwave services, so-called FR2 (28 to 39GHz) services have NOT been popular still now. From a viewpoint of device technology, in the sub-6GHz base stations. GaN HEMTs are becoming a main player for higher efficiency operation, compared to Si-LDMOS. In contrast, in the mm-wave base stations. Si-based transistors, such as SiGe HBT and SOI-CMOS, contribute to the realization of most of the real FR2 systems.

This workshop will introduce REAL base station techniques and their supporting REAL device techniques for 5G and beyond 5G mm-wave systems. The feature of this workshop is that the latest information of not only Si-based MIMO and related devices but also GaN-based MIMO and related devices is given at a time.

The workshop attendees, therefore, will be able to learn and understand a variety of technical issues, their countermeasures. and the latest results related to base station transmitters and devices of 5G FR2 at a time. Thus, it is expected that this workshop will be very useful for 5G amplifier designers;

students, beginners or less-experienced circuit/device designers as well as experienced designers engaged in circuit- and device-suppliers for use in 5G and beyond 5G systems.

PROGRAMME

5G and Beyond 5G mm-Wave Market Trend and Related Technical Requirements Yasunori Suzuki

¹NTT docomo, lapan

Millimeter-Wave Colocated- and Distributed-Massive-MIMO, its Spatial Division Multiplexing Selectivity and Energy Efficiency Tomova Kanekr ¹NFC Janan

Advanced Millimeter-Wave GaN Power Amplifiers for BTS

Takuma Torii¹, Keigo Nakatani¹, Yutaro Yamaguchi¹, Shintaro Shinjo ¹Mitsubishi Electric Corporation, Japan

Highly Scalable GaN Processes for Millimeter Wave Front-End MMICs

Rémy Leblanc¹, Ahmed Gasmi¹, Majid ElKaamouchi¹, Joël Moron¹, Philippe ¹OMMIC SAS, France

Oorvo mm-Wave MMIC Technologv for 5G and Bevond Shuoqi Chen¹. Charles F. Campbell². Kevin W. Kobavashi

¹Oorvo, USA, ²Oorvo

MONDAY 14:20 - 18:20

Multi-Tone Power Amplifier Characterization as Enabler of Higher Efficiencies and Better Linearity Under Wideband Modulation

Chair: Marc Vanden Bossche¹ Co-Chair: Dries Peumans² ¹NI, ²Vrije Universiteit Brussel - imec Room: Gamma 6

Power amplifier insight and design have been and still are relying often on continuous wave (CW) characterization. This clearly reflects in the waveform engineering for different classes of operation where voltage and current waveforms are being shaped by manipulating fundamental and harmonic impedances

Unfortunately given the present wideband modulation schemes this approach leads to sub-optimal amplifiers, sacrificing often in power efficiency and/or linearity.

In communications power amplifiers need to meet the 3GPP specifications and as such after fabrication they are tested with realistic signals compliant to the 3GPP standard. Often efficiency is sacrificed to meet these specifications. Would it not make sense to use the 3GPP compliant realistic signals during the design process so that different figure of merits, like linearity and efficiency are taken directly into account. Unfortunately these realistic signals are too complex to provide insight that leads to better power efficiency at acceptable linearity. Is the amplifier designer then doomed to use CW signals?

This workshop will introduce the attendees to the practical use of multi-tones making the bridge between CW characterization and the use of realistic modulation signals. Of course, one cannot use any type of

PROGRAMME

Replacing 3GPP Signals by Multi-Tones: Is It a Bad Idea? Ricardo Figueiredo¹

¹Universidade de Aveiro

Using Multi-Tones to Unravel the (Non)linear Performance of RF Power Amplifiers

Dries Peumans¹

¹Vrije Universiteit Brussel - imed

Digital Predistortion and Multisines: A Good Marriage? Amedeo Varano¹

¹imec - Vrije Universiteit Brussel

Multi-Tone and 3GPP Characterization: Not Just Theory!

Marc Vanden Bossche¹

WM7

EuMC

multi-tone to be compliant with the 3GPP standards. Properly designed multi-tone signals are rich enough enabling design tradeoffs while meeting closely the 3GPP specification. At the same they are simple enough to provide deep insight in the power amplifier behavior, feeding back into the design.

WM8

EuMC

MONDAY 14:20 - 18:20

Additive Manufacturing

Chair: Tinus Stander¹

Co-Chair: Riana Helena Geschke² ¹University of Pretoria, ²Fraunhofer FHR

Room: Beta 8

This workshop on Additive Manufacturing (AM) presents recent developments in the domain of dielectric. metallic and 3D planar additive manufacturing for various applications. Application domains include industrial radar and space applications, with highlighted components including planar circuits, antennas and filters for microwave

and millimeter-wave systems.

Given the typical application areas, criteria such as environmental aspects of the AM materials, as well as cost and weight reduction, are important themes in this workshop. Other aspects of the complete AM design and manufacturing workflow are presented, such as material characterisation, surface metallization, and thermal management. The measurement of surface roughness of AM parts up to millimeter-wave frequencies is presented, as well as its effect on performance. Advantages and disadvantages of different material characterisation techniques are discussed, with data on the effect of uncertainties. Furthermore, it is

demonstrated how efficient thermal management based on metallic AM techniques can be incorporated as a functional and efficient part of the AM design.

In the domain of design approaches, it is often said of AM that "complexity comes for free". This is demonstrated in this workshop, where several projects specifically exploit the unique capabilities of AM production. This includes new approaches to the lavout of planar circuits. where unconventional 2.5D and 3D system-in-package solutions can now be realized.

PROGRAMME

Using SLA-Printed Resin Parts as Functional Elements in Microwave Design Tinus Stander¹

University of Pretoria, South Africa

Additive Manufacturing of Millimeter-wave Components for Industrial Radar

Carlos Sempere Sempere Chaves¹ ¹Fraunhofer FHR, Germany

Additive Manufacturing for Space Applications: Antennas and Passives Itziar Maestrojuán Biurrun

¹Anteral, Spain

3D Printed Microelectronics & New Design Thinking Rafael del Rev

¹Nano Dimensions, Israe

Determining the Properties of Dielectric Materials in the Millimeter Wave Frequency Range Produced by Additive Manufacturing

Ad Reniers¹, Elmine Mever¹, Paola Escobari Vargas¹ ¹Technical University Eindhoven. The Netherlands

From Surface Roughness Modeling to 3D-Printed Microwave Components Gerald Gold¹

¹Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany

Innovations for High-Density Antennas and Phased Arrays Chair: Luigi Boccia¹

Co-Chair: Yong-Ling Ban²

¹University of Calabria, ²University Of Electronic Science and Technology of China Room: Beta 4

MONDAY 09:00 - 18:20

One of the most common requirements of modern antenna systems is the high integration density that is the capability to implement exceptionally dense circuits where radiating elements, electronics, interconnects and DC/control lines are tightly distributed across multiple technology domains. Different technologies are used to combine multiple components and functions onto a single system, and to protect the circuit from external factors such as temperature and moisture.

The possibility to have different implementation solutions for the building blocks of the same antenna system can be functional to a reduction of its cost, size, and mass or to affect its final performance and functionalities. This aspect is particularly important for millimeter wave systems where the constantly increasing demand for reconfigurable systems makes integration aspects a key enabling technology This workshop covers various topics related to the design and integration of phased arrays and antenna systems for millimeter-wave and sub-THz applications. The talks will include discussions on modularity approaches to phased array integration. highly-efficient and miniaturized circuits in SiGe and CMOS for millimeter-wave phased arrays, and scalable multibeam low-cost SATCOM and 5G phased-arrays with wide

PROGRAMME

A Modularity Approach to Phased Array Integration Luigi Boccia¹ ¹University of Calabria, Italy

Multi-Layer Integration Solution to Multibeam Antenna Design li-Wei Lian

¹Nanjing University of Science and Technology, China

Antenna Array Design in Multilayer PCB Allowing Chip-Embedding and Air-Filled Substrate Integrated Waveguides for **D-Band Radar Applications** Francesco Filice¹ ¹IMEC. Belgium

Advanced Packaging Techniques

for mm-Wave Antennas in Package for Array Applications

¹University of Minnesota USA

Heterogeneous Integration Strategy of Antennas and Phased Arrays using Transparent, Flexible, and sub-Skin Depth Lavers Wonbin Hong¹

Scalable Multibeam Low-Cost SATCOM and 5G Phased-Arrays with Wide Scan Angles Using **Commercial Silicon Chips** Gabriel M. Rebeiz¹ ¹UCSD, ECE Department, USA

Highly-Efficient and Miniaturized Circuits in SiGe and CMOS for Millimeter-Wave Phased Arrays Cagri Ulusov¹

¹Karlsruhe Institute of Technology, Germany

Rhonda Franklin Drayton

Integrated Antenna Systems: Technologies and

scan angles using commercial silicon chips. Additionally, the workshop will feature talks on wide-angle implementation methods for scanning array antennas, multi-layer integration solutions for multibeam antenna design, and advanced transceiver-antenna co-integration techniques at mmWave and sub-THz. The workshop will also discuss the heterogeneous integration strategy of antennas and phased arrays using transparent. flexible, and sub-skin depth lavers, as well as antenna array design in multi-layer PCB allowing chip-embedding and air-filled substrate integrated waveguides for D-Band radar applications

¹Pohang University of Science and Technology, South Corea

Wide-Angle Implementation Method to Scanning Array Antenna

Qiang Sun¹

¹University of Electronic Science and Technology of China, China

Advanced Transceiver-Antenna **Co-Integration Techniques at** mmWave and sub-THz: Recent Achievements and Future Challenges

Antonio Clemente¹, Jose Luis Gonzalez¹ ¹CEA Leti, France

High-Density Metasurface Antennas with Advanced Capabilities - Design and Integration

Mohsen Sazegar ¹Kymeta, USA

WF1

EuRAD

FRIDAY 09:00 - 17:20

Virtual Validation of ADAS with Automotive Sensors

Chair: Thomas Zeh

Co-Chair: Arsalan Haider¹ ¹Kempten University of Applied Sciences

Room: Beta 1/2

Advanced driver-assistance systems (ADAS) are currently an area of focus in the automotive industry. Modern vehicles are equipped with different ADAS, increasing the driver's comfort and safety. The complexity of ADAS is also increasing rapidly, and validation of such systems is becoming challenging. The validation of such a complex system in the real world is expensive and time-consuming. According to the statistical studies, billions km of test driving are required to demonstrate the autonomous vehicle failure rate being lower than that of humans. Moreover, we see increasing efforts and work from academia and industry about virtual validation processes. In this workshop, state-of-the-art

contributions on topics that implement virtual validation of automotive sensors will be presented. Among these, scenario-based testing using software-in the-loop, hardware-in-the-loop and over-the-air vehicle-inloop methods will be focused primarily on RADAR and LiDAR sensors.

PROGRAMME

Physical Modelling for Sensors, Millimeter-Wave Radar, LiDAR. and Camera

Hideo Inoue ¹Kanagawa Institute of Technology

Environment Recognition Using Deep Learning

Tokihiko Akita¹

¹Toyota Technological Institute

A Workflow to Generate Synthetic Data to Train AI Based Algorithms for AD Günther Hasna¹, Petr Fomin¹, Aydin Uzin¹ ¹ANSVS

Metrics for Specification and Validation of Perception Sensor Simulation Philipp Rosenberger

¹Persival

Making ViL, SiL and Collected Radar Data Comparable: An Application of the Novel Double Area Validation Metric Lukas Elster¹, Aidar Khakimov²

¹TU Darmstadt, ²TU Ilmenau

Virtual Validation of Radars Karl Vanäs¹, Stella Bevilacoua¹, Sara Tell¹ ¹Volvo Car Corporation

Ray Tracing & 6th Generation Radar Sensor Model Hasan lobal¹. Sreehari Buddappagari¹ ¹Continental

Development and Validation of Automotive LiDAR Sensor Model with Standardized Interfaces Arsalan Haider¹ Michael Köhler ¹Hochschule Kempten Blickfeld

Modeling and Validation of Automotive RADAR MMIC Impairments by using the Standardized

Interfaces for Closed-Loop Simulation

Tim Poguntke¹, AbduelKadir Ervildirim², Arsalan Haider³ ¹Hochschule Kempten, Infineon Technologies, ²Hochschule Kempten, Infineon Technologies, ³Hochschule Kempten Blickfeld

Simulating Radar Systems: An Overview Over Methods, Applications and Challenges Christian Bluthardt¹, Thomas Binzer¹ ¹Robert Bosch GmbH

Validation of Radar-Based ADAS and AD Functions on Vehicle-In-The-Loop Testbeds Holger Gryska¹, Jürgen Holzinger²

¹Rohde&Schwarz International GmbH, ²AVL Deutschland GmbH

ASAM Standards for Highly Automated Driving – Helping Achieve the Safety Argumenta-

tion	
Benjamin Engel ¹	
'ASAM e.V.	

FRIDAY 09:00 - 17:20

Unlocking the Potential of Radar by Compressed-Sensing, Machine-Learning, and High-Resolution **Data Processing**

Chair: Maria Antonia Gonzalez Huici Co-Chair: Max Schurwanz² ¹Fraunhofer FHR, ²Hamburg University of Applied Sciences (HAW) Room: Beta 3/4

In the field of radar, there is a growing need for higher resolutions to enable the detection and accurate localization of targets in complex scenarios, in order to improve the tracking of multiple closely spaced targets or to support correct target identification. Compressive Sensing (CS), which was first proposed in 2005, is by now a mature mathematical theory that allows to achieve higher resolution than conventional methods and which is able to extract underlying information from fewer samples than required by the Nyquist sampling theorem. This can be achieved by a combination of random sampling and sparse signal reconstruction algorithms and under the constraint that the solutions of interest are sparse in some domain (i.e., there are only few non-zero elements plus noise). Radar is an excellent application field for CS methods, because target object scenarios are often intrinsically sparse. For example, in the range domain, Doppler domain, or angular domain,

typically only a few target objects are found. CS algorithms can reliably recover these sparse signals, even when the measurements are noisy or corrupted. In addition to radar, CS can also be applied to optical sensors. Overall, CS has emerged as a powerful tool for signal processing, enabling efficient acquisition, processing, and interpretation of data. However, the adoption of CS techniques in operational systems is still limited in some cases due to practical constraints such as latency, memory size, and power consumption dictated especially by the iterative nature of the sparse reconstruction algorithms used in CS. In parallel, in recent years Machine Learning (ML) has achieved tremendous success in many commercial applications such as automatic face recognition, speech recognition, natural language processing, autonomous vehicles, and robotics. Machine Learning has the potential to provide computationally efficient approaches to improve target

PROGRAMME

The Needle in the Haystack -Exploiting Sparsity with Compressed-Sensing-Aided Angleof-Arrival Estimation for MIMO Radar and Optical Sensors Max Schurwanz¹, Andrej Harlakin², Peter A. Hoeher² ¹Hamburg University of Applied Sciences (HAW), ²Kiel University

Optimal Design of MIMO Sparse

Arrays

Maria Antonia Gonzalez Huici', Aitor Correas-Serrano', Christian Greiff' Christian Kurtscheid', Renato Simoni', Saravanan Nagesh' ¹Fraunhofer FHR

Advancing Future Generation **Digital Radars Through Compres**sive Sensing

Christina Bonfert¹, David Werbunat¹, Christian Waldschmidt ¹University of Ulm

Exploiting Learning and Sparsity for Joint Radar-Communications Kumar Vijay Mishra¹ ¹United States DEVCOM Army Research Laboratory

Artificial Neural Networks for

DoA Estimation in Radar Markus Gardill ¹Brandenburg University of Technology

Machine Learning and Compressive Sensing Techniques for DoA Estimation in Automotive Radars Ignacio Roldan¹ Francesco Eioranelli² Alexander Yarovov² ¹TU Delft, ²TU Deflt

WF2 EuRAD

detection, localization and classification in radar with enhanced resolution. However, an important element in the success of ML for these applications is the availability of large databases required for the training, which may be a strong limitation in certain cases. Properly designed, ML techniques may complement existing CS solutions for tasks like target object detection and localization, while deep-learning techniques may open up new potentials for tasks such as target object classification.

This workshop will cover exciting applications of advanced data processing approaches for radar, joint radar and communications (RadCom) as well as optical sensors, with special focus in CS and ML based techniques, including also aspects of high-resolution data processing, such as synthetic aperture radar (SAR). The potential and limitations of the proposed solutions will be highlighted.

Automotive SAR Enabled by Autarkic Odometry Determination for Dynamic Driving Applications

Thomas Gisder¹, Marc-Michael Meinecke¹, Heiko Gustav Kurz¹ ¹Volkswagen

Novel Concepts for Implementing Deep Neural Network Based Radar Angle Bearing and Imaging with Ultra Sparse Arrays

Christian Schüßler¹, Marcel Hoffmann¹, Martin Vossiek¹ ¹University of Erlangen-Nuremberg

FRIDAY 09:00 - 13:00

Characterization of sub-THz Channels for Communication and Sensing

Chair: Fatemeh Norouzian

Co-Chair: Marina Gashinova¹ ¹University of Birmingham

Room: Beta 5

Sub-THz frequency region has gained a lot of attention globally owing to promise to deliver high data rate communications and highresolution sensors and imaging systems. Maturity of the components and demonstration of capabilities of sub-THz sensing and communication systems indicate the precommercial level, yet, there are some gaps; first of all related to anticipated degradation of performance in adverse environmental conditions and other phenomena within the propagation channel.

A comprehensive channel characterization is critical step to determine and quantify the potential limitations and bounds for the sub-THz operations. This workshop explores several approaches and methodologies of sub-THz channel characterization for indoor and outdoor applications, highlighting

PROGRAMME

Characterization of mm-Wave and sub-THz Channels for Automotive Sensing

¹University of Birmingham, UK

Fatemeh Norouzian

Channel and Propagation Modelling for Future High Frequency Applications Joonas Kokkoniemi¹

¹University of Oulu, Finland

Characterisation of Frequency Selective Reflections Off Indoor Surfaces for sub-THz Band Mohsen Khalily

¹University of Surrey, UK

Terahertz Sensing for Future Healthcare Oammer H. Abbas ¹University of Glasgow, UK

The Development of THz Systems for Industrial Applications in the Frequency Range from 0.1 THz to 0.5 THz Dirk Nüßler¹

recent advances and identifying challenges.

¹Fraunhofer FHR. Germany

WF3 EuRAD

FRIDAY 09:00 - 13:00

Radar Target Simulation

Chair: Benjamin Nuss¹ Co-Chair: Christina Bonfert² ¹Karlsruhe Institute of Technology, ²Ulm University Room: Gamma 6

Automotive radar sensors play an important role in the current development of autonomous driving. Their ability to detect objects even under difficult conditions makes them indispensable for environment detection in autonomous vehicles. Since their functionality must be validated in the field, a fully integrated test system is required. Radar target simulators (RTS) are a potential solution to this task that has recently attracted much attention from both the research and commercial sectors. Target simulators are capable of deceiving a radar under test (RuT) by creating an artificial environment of virtual radar targets. To accomplish this task, RTS systems receive the radar signal emitted by the RuT and send back a modified version of it. However, this modification can be implemented using different methods

depending, for example, on the modulation scheme of the radar as well as on the range to be emulated. This workshop provides an overview and comparison of different RTS implementations and their expected characteristics. The advantages and disadvantages of the different concepts are discussed and possible solutions to meet different specifications are shown with concrete examples. In addition, new developments, e.g. for the precise generation of complex traffic scenarios and realistic propagation effects, are presented.

PROGRAMME

Current Status and Recent Advances in Radar Target Simulation Christoph Birkenhauer¹

¹FAU Erlangen-Nuremberg

¹TU Ilmenau

¹Ulm University

Emerging Challenges in Radar Target Emulation Thomas Dallmann¹

High-Precision Automotive Radar Target Simulation Benjamin Nuss¹, Axel Diewald¹ ¹Karlsruhe Institute of Technology

Automotive Radar Target Simulation Techniques for the **Generation of Complex Traffic** Scenarios Pirmin Schöder

Fahimeh Rafieinia¹, Kasra Haghighi¹ ¹UniqueSec **Enhancing ADAS Performance**

Vitali Anselm¹

¹Kevsiøh

Radar Test Technology for Production Test and Vehicle Endof-line Applications - Challenges and Solutions Henrik Liebau¹, Arvid Sims

ASGARD2: Automotive RTS with Angle Perception in Near-field

through Radar Data Injection

FRIDAY 09:00 - 13:00

Industrial Radar

Chair: Dirk Nüßler Co-Chair: Marta Arias Campo² ¹Fraunhofer FHR, ²IMST GmbH Room: Gamma 8

Modern radar systems use in industrial measurement technologies has increased rapidly in recent years. The driver of this development is the increasing availability of compact, high-performance radar systems, which have become more common for inline measurement systems and mainly serve to inspect singular goods or bulk materials. The ongoing development of Si/SiGe technology enables large bandwidths at sub-THz frequencies, which is translated in high-resolution measurements. Furthermore, in the foreground of this rapid evolution are the further development of real-time capable signal processing to meet the high production stack, as well as new antenna concepts and multi-channel system designs. In addition to a high measurement speed, the systems now achieve measurement accuracies in the

µm range. Initially, the field of application of radar systems was pure distance measurement in the production process, primarily at measuring positions with harsh environmental conditions prevented or complicated the use of optical sensors. Nowadays, system concepts for material characterization, layer thickness measurement or 3D imaging are gaining in importance. The range of applications of modern radar systems in industrial metrology extends from the monitoring of rolling processes in the steel industry to layer thickness measurement technology in plastics production, or the recycling and sorting of plastics to the measurement of layer thickness in car production. The workshop will provide an overview of current technological trends and current and future applications for radar systems in industrial

PROGRAMME

Radar Application in the Recycling Economy - Project Waste4Future Dirk Nüßlor ¹Fraunhofer FHR. Germany

Road Surface Recognition at mm-Wavelengths Using a Polarimetric Radar

Vessen Vassilev¹ ¹Chalmers, Sweden

Industrial D-Band FMCW Radar: Hardware, Signal Processing, and Applications Jan Barowski¹

¹Ruhr University Bochum, 2Pi-Labs, Germany

Radar Solutions for Applications in Hot Rolling Mills Bettina Fischer¹ ¹IMS Messsysteme Germany

FRIDAY 09:00 - 13:00

Applications for Advanced Passive Radar **Systems**

Chair: Philipp Markiton ¹Fraunhofer FHR Room: Gamma 7

The workshop is about advanced techniques and applications for passive radars with the aim to provide a wide audience with an overview of the theoretical aspects as well as an insight into real world applications of advanced passive radar techniques. The first lecture will present passive radar fundamentals to provide the attendees with basic knowledge required for this workshop. Advanced applications of passive radar are covered next: the first presentation focuses on passive radar on moving platforms for moving target indication using multi-channel PCL. Then modern passive radar imaging techniques using Synthetic Aperture Radar (SAR) techniques will be discussed, including the definition of the signal model, which allows to design and develop appropiate signal processing algorithms.

The next part of the workshop focuses on new opportunities for passive radar, which are offered by advanced space-based and terrestrial communication infrastructures, that have been deployed for operation in recent years. Massive space-based constellations, e.g. Starlink and OneWeb, offer new opportunities and challenges for passive radar in terms of target detection and imaging, which will be discussed in a lecture. The overview of new future potential illuminators of opportunity concludes with an overview of terrestrial communication infrastructures such as 5G and 6G, which are currently being deployed in many countries worldwide.

A theoretical background will be presented as introduction for each addressed topic, in order to provide the audience with the

PROGRAMME

Introduction to Passive Radars Philipp Markitor ¹Fraunhofer FHR

Multi-Channel PCL for GMTI Philipp Markiton ¹Fraunhofer FHR

Passive Radar Imaging Damian Gromek¹ ¹Warsaw University of Technology

Passive Radar Techniques Based on Broadband Communication LEO Satellite Constellations Rodrigo Blazquez-Garcia¹ ¹Eraunhofer EHR

Opportunities and Limitations in 5G-Based Passive Radars Piotr Samczyński¹ ¹Warsaw University of Technology

WF5 EuRAD

required knowledge. After presentation of

the appropiate signal processing techniques,

results from evaluation of experimental data

will be shown.

Lens Antenna Design for Sub-THz Industrial Radar Applications Marta Arias Camno¹ ¹IMST GmbH, Germany

Radar Fabian Friederich ¹Fraunhofer ITWM, Germany

metrology.

Industrial Terahertz Imaging

ANSYS Technical Workshop

Tuesday 19th, Wednesday 20th, and Thursday 21st September 2023 10:00 – 17:00 Room: Beta 1

When visionary companies need to know how their world-changing ideas will perform, they close the gap between design and reality with Ansys simulation. For more than 50 years, Ansys software has enabled innovators across industries to push boundaries by using the predictive power of simulation. From sustainable transportation to advanced semiconductors, from satellite systems to life-saving medical devices, the next great leaps in human advancement will be powered by Ansys.

Take a leap of certainty ... with Ansys.

TUESDAY 19™	WEDNESDAY 20 TH	THURSDAY 21st
The Latest and Greatest Features in HFSS 2023 (Update Overview) Markus Laudien Ansys	Multiphysics Analysis of 5/6 G An- tenna Arrays David Prestaux Ansys	RF Filter Synthesis for Planar and 3D Filter Topologies Using Nuhertz and Synmatrix Markus Laudien & Diamond Liu Ansys & Synmatrix Tech
Q&A	Q&A	Q&A
Break	Break	Break
Installed Performance Analysis of Antenna Phased Arrays: Challenges and Solutions Alexander Shalaby CADFEM	An Easy Workflow Made Even Easier: Combining PCB-Layout and 3D ele- ments Markus Laudien Ansys	The Latest and Greatest Features in HFSS 2023 (Update Overview) ^{Olivier Pelhatre} Ansys
Q&A	Q&A	Q&A
Break	Break	Break
Accurate and Efficient RFIC Simula- tion Workflow in HFSS Markus Laudien & David Prestaux Ansys	Save Your Time: Automation Approaches in Circuit and Layout Geometries Using PyAEDT Olivier Pelhatre Ansys	Meet the Experts: Open Table for Questions
Q&A	Q&A	
Break	Break	
The Latest Advances in Simulation for Automotive Radar Applications Amazir Moknache Ansys	Simulating Cable Harness and EMC sources for Automotive Applications – An Easy Tool for a Complex Task: Ansys EMC Plus Amazir Moknache	

Ansvs

Dassault Systemes Technical Workshop

Tuesday 19th September 2023 09:00 - 18:00 Room: Beta 5

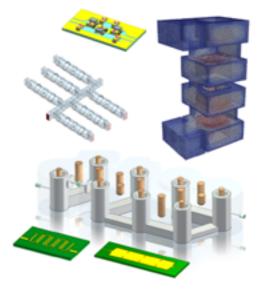
Chair: Theunis Beukman Co-Chair: Carlos Vicente

Filters & RF Passive Components with SIMULIA CST Studio Suite

Dassault Systèmes, the 3DEXPERIENCE Company, is a catalyst for human progress. We provide business and people with collaborative virtual environments to imagine sustainable innovations. By creating 'virtual twin experiences' of the real world with our 3DEXPERIENCE platform and applications, our customers push the boundaries of innovation, learning and production. On top of that, SIMULIA, a brand of Dassault Systèmes, delivers realistic simulation applications that enable users to explore real-world behavior of product, nature and life

Modern radio frequency (RF) front-end systems in both satellite and telecommunications require a multitude of filters to mitigate interference – especially with the increased use of carrier aggregation and demands on spectrum utilization. Furthermore, such systems have stringent power considerations such as efficiency, throughput of large RF signals or reliability; careful design and analysis are required in all of these cases. SIMULIA CST Studio Suite[®] offers a wide range of solver technologies, synthesis tools and optimization algorithms. Join us in this technical workshop to explore the state-of-the-art in simulation for your RF applications.

09:00 New in CST Studio Suite®


10:40 We will show a range of significant features and functionality introduced in recent releases of SIMULIA CST Studio Suite[®]. To name a few: the non-parametric shape optimization, which revolutionizes the way we approach 3D models for EM; the new Eigenmode solver offers the ability to include lossy materials, boundaries and complex port terminations; sensitivities in general parametric models are available for tuning or optimization; coupled workflows in a single environment makes it easy to take both low- and high-frequency effects into account for ferrite devices.

11:20 Filter Design

13:00

The design of filtering devices is challenging, and typically requires expert knowledge. At the same time, the process easily results in a multitude of repetitive tasks and trials. To ease this burden and make it more accessible to even less experienced designers, SIMULIA CST Studio Suite[®] offers advanced technologies with Filter Designer 3D for the synthesis, modelling and optimization of RF filters. Advanced techniques, based on the coupling matrix and ladder circuits, allow the extraction of filter parameters and thus opens the door to design complex 3D geometries efficiently. This also includes the newly added functionality for lowpass/highpass filters.

14:20 Passive Components & Feed Networks

16:00 Diplexers and multiplexers require a complicated design process. We will show how to simplify this procedure by making use of our specific tools and workflows. In particular, Fest3D for waveguide-based components can greatly speed up the design of multiplexers. Similarly, Filter Designer 3D is able to design diplexers directly and speed up the design of multiplexers regardless the technology they are implemented in. Also, a non-parametric optimization strategy, combining CST Studio Suite® and Tosca, will be presented for the optimization of various components in an antenna feed chain. This is a key workflow to take profit of all the advantages that additive manufacturing present.

16:40 High Power Components

18:00 Many different applications require the use of high power levels. Some examples are base stations, satellite communication systems, electronics, etc. CST Studio Suite[®] environment provides different tools and solvers to deal with specific aspects of high power components such as thermal effects, fluid flow analysis, stress and deformation analysis or RF breakdown.

We will show some use cases such as RF breakdown analysis in filters with Spark3D or water-cooled devices for which one uses the Conjugate Heat Transfer (CHT) solver within CST Studio Suite[®].

IHP Technical Workshop

Wednesday 20th September 2023 09:30 – 13:00 Room: Beta 5

22nd IHP Technology & Service Workshop

IHP is one of the world's leading research institutions in the field of silicon-germanium electronics, and its electronic and photonic-electronic technologies and circuits are among the most powerful in the world. The workshop will present the latest information on IHP's technologies and offerings, which are well established in applications such as wireless and broadband communications, health, space and Industry 4.0.

09:30 IHP's Research & Development for CMOS+X Technol-10:10 ogy Extensions A. Mai

IHP technology research and developments are focused on functional extensions of core SiGe BiCMOS technologies to enable smart system solutions e.g. for wireless- and broadband communication. This talk will present the current status and roadmap of various integration concepts that focus on new generations of SiGe-RF devices, electronic-photonic cointegration and dedicated device developments. Moreover, approaches for future hybrid integration methods for InP-on-Si, scaled CMOS with SiGe-HBT as well as radiation-hard and high-voltage (LDMOS) device integration in IHP technologies will be introduced.

10:10MPW Service for SiGe BiCMOS, Silicon Photonics10:50and Customized Technologies

R. Scholz

IHP offers research partners and customers access to its high-performance SiGe BiCMOS technologies with dedicated integrated RF and silicon photonics modules, as well as development support for dedicated process steps and devices. IHP's portfolio includes the world's fastest integrated SiGe heterobipolar transistors, and moreover special MPW runs with memristor devices for AI, with a graphene module for photonic devices, or with a backside redistribution layer for advanced packaging. The offer also includes support for the development of dedicated processes on single tools, or of process flows for special devices or interposer flows, as well as the adaption of existing standard process flows. The talk will provide an overview on the technologies, available special modules, MPW organization and scheduling, and technology development services. Free to attend For registration contact: sojka@ihpmicroelectronics.com

11:10Process Design Kit to develop products, serve education and support research projects11:50E. Vater

This talk will introduce professional Process Design Kits (PDKs) for IHP's SiGe BiCMOS and electronic-photonic technologies, which are offered through the MPW service. This is the foundation for developing circuits with the world's fastest bipolar transistors in the sub-terahertz range. For photonic PDK, an approach to the development of electrical-optical co-simulation will be demonstrated. IHP has released the first process and PDK information as open source. A roadmap for analog and RF design flow using open source tools will be presented. The primary goal is to use this PDK in research and education programs. Finally, details of IHP's design support for new research modules such as memristive devices for AI or graphene for photonic devices as well as further steps in the development of Assembly Design Kits (ADKs) for RF interconnects will be presented.

11:50IHP Solutions GmbH Production and Value-Added12:30Services for Customers' ASICs
A. Gajda

IHP Solutions GmbH is a 100% subsidiary of IHP, established in 2015 as an industry-oriented company focusing on direct industrial exploitation and further development of IP from IHP. The foundry services for international customers, utilizing the IHP qualified high performance SiGe BiCMOS technologies for the fabrication of customer application specific integrated circuits (ASICs) will be presented. The talk will give an overview of the IHP Solutions offer for R&D and production services, as well as value added services (VAS) and supply chain management (SCM).

11:10

SUNDAY OVERVIEW

		P		<u>_</u>				
Room	09:00 - 10:40	11:20 - 13:00		14:20 - 16:00	16:40 - 18:20			
Beta 1/2		Funda	SC1 EuMIC mentals of Microwave PA	Design				
Beta 3	WS3 Eu Highly-Integrated mm-Wave Circuits Applicat	and Systems for Emerging Radar		WS6 EuMIC/EuRAD mm-Wave Integrated Radar Circuit Design and SoC Integration in Silicon Technologies				
Beta 4					EuMC neration Communications Systems			
Beta 5		WS2 EuMIC Terahertz Device, Circuit and System fundamentals and applications						
Beta 6	WS4 EuMIC Joint Communication			WS5 EuMIC/EuMC Heterogeneous Integration for Next Generation of Communication and Sensing				
Beta 7		WS1 EuMC Broadband and Microwave Signal Processing Using Electronic-Photonic Integration						
Beta 8	13th Tom Brazil Doctoral School of Microwaves From Microwaves to Machine Learning: Building and Training Artificial Neural Networks for Radar-Based Gesture Recognition							
Beta 9	7th European Microwave Student School Microwave Measurement Techniques							
Gamma 6	SC2 EuMIC Wideband Microwave Measurements Measuremen	of Multi-Port Devices on VNA-type		Design, Linearization, and Optimiz	AIC/EuMC ation Techniques for Multiple-Input mplifiers			
Gamma 7				RF Packaging and IC Integration fo	IC/EuRAD r Communication and Radar Applica- ve 100 GHz			

MONDAY OVERVIEW

					Ĵ			
Room	09:00 - 10:40	11:20 - 13:00	I	14:20 - 16:00	•	16:40 - 18:20		
Alpha 5			Automotive Forum					
Alpha 6	<mark>Eumico1</mark> Gan LNA	EuMICO5 EuMIC Opening		EuMICO6 Advanced PAs for Microwave Bands		EuMIC10 GaN-PAs for mm-Wave Bands		
Beta 1/2	Millime	ter-Wave On-Wafer Measurement and Mater	WM1 EuMC rial Measurement for Fut	ure Communications and Automo	tive Radar	Sensors		
Beta 3		Measurement Methods for Passive In	WM2 EuMC termodulation and Enviro	onmental Testing of Electronic Cir	cuits			
Beta 4		Integrated Antenna Systems: Technolog	WM9 EuMIC ies and Innovations for H	igh-Density Antennas and Phased	l Arrays			
Beta 5	EuMICO2 Novel Modelling Techniques for GaN and Cryogenic Devices			EuMICO7 Novel Techniques for Micro- wave and mm-Wave Circuits and Systems Design		EuMIC11 Novel Devices and their Integration		
Beta 6	EuMICO3 III-V mm-Wave Devices and Characterisation			EuMICO8 High-Speed Mixed-Signals Circuits and Systems		EuMIC12 Frequency Conversion Circuits		
Beta 7	EuMICO4 Techniques for Measurement and Detection			EuMICO9 Sub-THz Circuits and Techniques		EuMIC13 Circuits and Techniques for Phased-Array Systems		
Beta 8		NM3 EuMC na System Calibration for 5G/6G			WM8 EuM ive Manufa			
Beta 9	7th European Microwave Student School Microwave Measurement Techniques							
Gamma 6		NM4 EuMC d Pulsed Power Bioelectromagnetics	WM7 EuMC Multi-Tone Power Amplifier Characterization as Enabler of Higher Effic cies and Better Linearity Under Wideband Modulation					
Gamma 7		5 EuMIC/EuMC habler for D-Band Applications and Beyond		REAL Base Station and Related	WM6 EuM d Device Te i-Wave Syst	chniques for 5G and Beyond 5G		
Gamma 8	15th ARFTG On-Wafer User's Forum							

EuMC

TUESDAY OVERVIEW

					Ĵ	
Room	09:00 - 10:40	11:20 - 13:00	I	14:20 - 16:00	I	16:40 - 18:20
Alpha 5/6	EuMIC14 CMOS Circuits Techniques for Communication Applications	EuMW01 EuMW/EuMC Opening Session		EuMIC/EuMCO2 EuMIC Foundry Session Panel Session on European Chips Act		EuMIC20 EuMIC Closing
Beta 1			Exhibitor Workshop Ansys			
Beta 2	EuMCO1 Interconnects and Packaging – I			EuMCO4 Passive Device Development with Innovative Design Approaches		EuMC07 Interconnects and Packaging - II
Beta 3/4	EuMIC/EuMCO1 Focused Session Low Noise mm-Wave Integra- ted Technologies for Sub-THz Wireless Communication			EuMC05 Focused Session THz Antennas and Systems		EuMCO8 Focused Session 6G THz Communications
Beta 5			Exhibitor Workshop Dassault Systemes			
Beta 6	EuMIC15 Building Blocks of Beamfor- ming Front-Ends		EuMW03 Joint Women in Microwaves (WiM) and Young Professionals (YP) Event			EuMW04 Special Session MTT-S Inter-Society Technolo- gy Panel Session - Biomedical Applications
Beta 7	EuMIC16 Advanced PAs on SiGe & InP Technologies			EuMIC18 PAs for Communication Systems		EuMCO9 Microwave and Millimeter- wave Systems and Applications
Beta 8	EuMCO2 Advances in Front-End Architectures and Active Components			EuMIC19 Circuits for Broadband mm-Wave Transceivers		EuMW05 Special Session APMC
Beta 9	EuMCO3 Integration Technologies Based on Advanced Materials and Topologies			EuMCO6 Multi-Functional and Reconfigurable Planar Filters		EuMC10 New Technologies in Planar Filters
Exhibition Hall		EuMIC17 EuMIC Poster				EuMIC/EuMC03 EuMIC/EuMC Poster

WEDNESDAY OVERVIEW

		Ĵ				Ś	
Room	09:00 - 10:40		11:20 - 13:00	I	14:20 - 16:00	I	16:40 - 18:20
Alpha 5	EuMC11 Characterization of Multi- Antenna Systems		EuRADO2 mm-Wave Antennas for Radar Applications		EuRAD04 Automotive Radar Signal Processing		EuRAD05 High-Resolution Radar and Imaging
Alpha 6	EuRAD01 EuRAD Opening			Defence	, Security and Space Forum		
Beta 1				Exhibitor Workshop Ansys			
Beta 2	EuMC12 Non-Planar Filters		EuMC17 Passive Components		EuMC20 Filters by Additive Manufac- turing		EuMC25 Beamsteering Arrays and Reconfigurable Intelligent Surfaces
Beta 3/4	EuMC13 Additive Manufacturing of Microwave Components		EuMC/EuRADO1 Waveforms for Distributed Networks and Integrated Com- munications and Sensing		EuMC/EuRADO2 Focused Session Joint Communication and Ra- dar Sensing - A Step towards 6G Part 1		EuMC/EuRADO4 Focused Session Joint Communication and Ra- dar Sensing - A Step towards 6G Part 2
Beta 5	Exhi	bitor Work IHP	shop		EuMC21 Metamaterials and Meta- surfaces		EuMC26 Field Theory and Numerical Techniques
Beta 6	EuMW06 Special Session MTT-S Inter-Society Technolo- gy Panel Session - Wireless Power Technologies		EuRADO3 Radar Target Measurement and Detection		EuMC/EuRAD03 Antenna Techniques for Radar		EuMC/EuRADO5 AESA & MIMO Antenna Technology
Beta 7	EuMC14 Signal Integrity and EMC		EuMC18 Microwave Components for Space Applications		EuMC22 Medical Microwave Applica- tions and Dosimetric Studies		EuMC27 Microwave Sensing Tech- niques for Biological Materials
Beta 8/9	EuMC15 High Efficiency Power Amplifier and Linearization Techniques		EuMC19 High Power Device and Amplifier Technology		EuMC23 Advanced THz Device and Photonic Techniques		EuMC28 Material and Waveguide Measurement
Exhibition Hall			EuMC16 EuMC Poster 1				EuMC24 EuMC Poster 2

EuMIC

Exhibitors

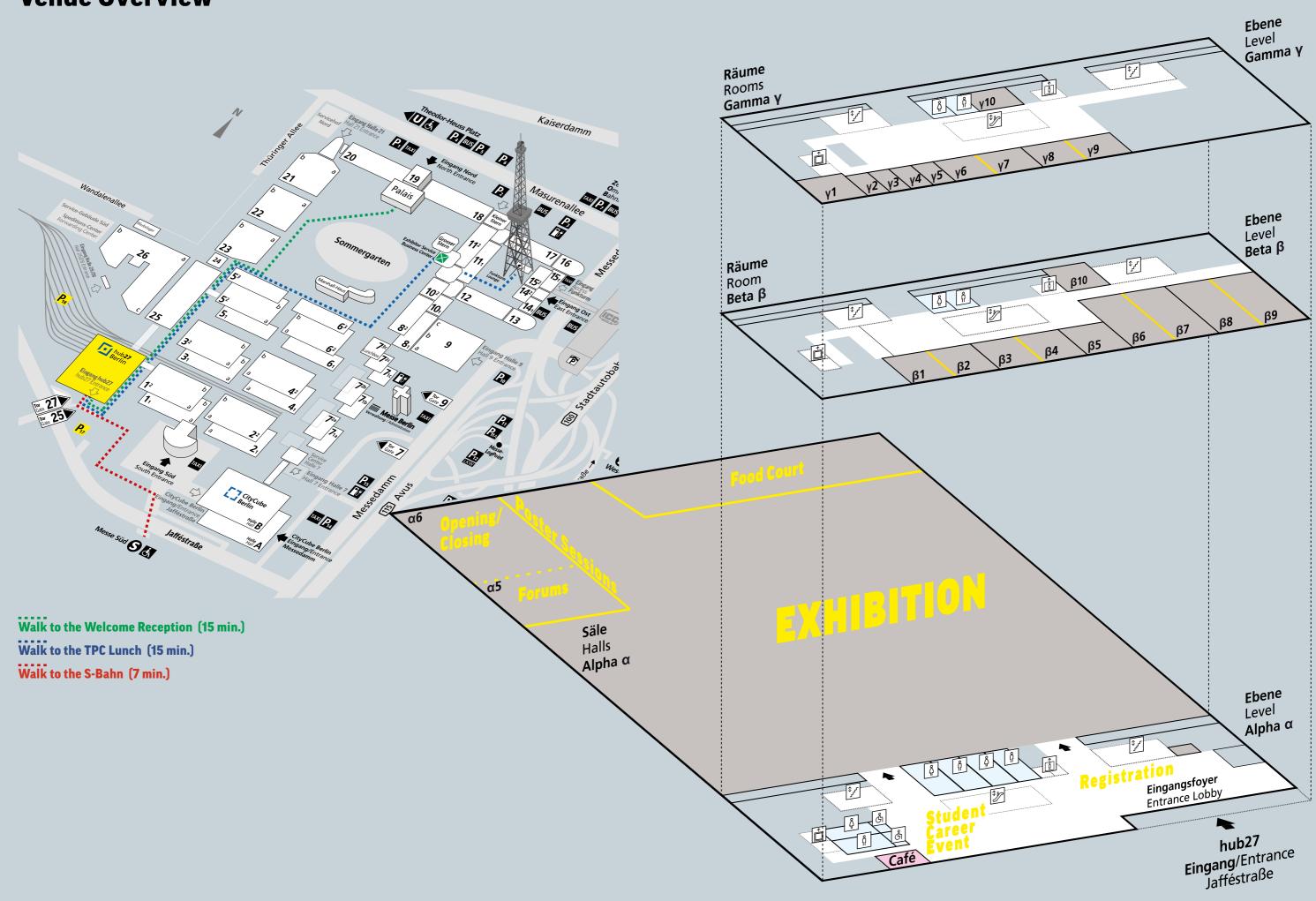
THURSDAY OVERVIEW

		Ĵ				Ś	
Room	09:00 - 10:40		11:20 - 13:00	I	14:20 - 16:00		16:40 - 18:20
Alpha 5				5G to 6G Forum			
Alpha 6	EuRADO6 Focused Session Automotive PMCW Radars Part 1		EuRAD08 Focused Session Automotive PMCW Radars Part 2		EuMC/EuRADO8 Microwave Sensing Systems and Components		EuMC41 EuMC Closing Session
Beta 1				Exhibitor Workshop Ansys			
Beta 2	EuMC29 MHz to GHz Wireless Data and Power Transfer Systems		EuMC34 Wearable and Flexible Solu- tions for Energy Harvesting		EuMC38 MHz to GHz Components and Sub-Systems for Wireless Data and Power Transfer		
Beta 3/4	EuMC/EuRADOG Innovative Designs for Radar, Satcom and mm-Wave Antennas		EuMC35 Innovative Concepts for Radar, Satcom and mm-Wave Antennas		EuMC39 OTA and Wideband Measu- rements		
Beta 5	EuMC31 Calibration and Deembedding		EuMC36 Channel Modelling and Measurement		EuMW07 Special Session India Business		
Beta 6	EuMC32 Beam-Steering and Beam- Switching Array Antennas		EuRAD09 Machine Learning for Radar		EuMC40 5G and MIMO Antennas		
Beta 7	EuMC33 Satcom and mm-Wave Antennas		EuRAD10 Modelling and Simulation		EuMC/EuRADO9 Advancement in Radar Systems and Concepts		
Beta 8/9	EuRAD07 Emerging Industrial Appli- cations		EuMC37 Microwave Sensors for Material Measurements		EuRAD11 Automotive Radar		
Beta Level							EuRAD12 EuRAD Poster
Exhibition Hall			EuMC/EuRAD07 EuMC/EuRAD Poster				

FRIDAY OVERVIEW

		Ś				
Room	09:00 - 10:40	I	11:20 - 13:00		14:00 - 15:40	15:40 - 17:20
Alpha 5/6				EuRAD Lunch	EuRAD19 EuRAD Closing	
Beta 1/2			Virtual Valida	WF1 EuRAD tion of ADAS with Automotive Sen	sors	
Beta 3/4		Unlocking	the Potential of Radar by Compre	WF2 EuRAD ssed-Sensing, Machine-Learning, ar	nd High-Resolution Data Processing	
Beta 5		WF3 EuRA Channels fo	D r Communication and Sensing			
Beta 6	EuRAD13 Focused Session UAV-based Radar		EuRAD16 Radar Sensing and Joint Communication			
Beta 7	EuRAD14 mm-Wave Hand Gesture Recognition		EuRAD17 Human Activity Monitoring incl. Vital Sign Extraction			
Beta 8/9	EuRAD15 Short Range Imaging Radar		EuRAD18 Imaging by Automotive Radars			
Gamma 6	WF4 EuRAD Radar Target Simulation					
Gamma 7	WF5 EuRAD Applications for Advanced Passive Radar Systems					
Gamma 8	WF6 EuRAD Industrial Radar					

EuRAD


s 📃 EuMW

EuRAD

VENUE OVERVIEW

Venue Overview

Exhibitor List

A 6G-RIC · A.H. Systems · ABS Technics · ACST · Active Tech. · Advanced Microwave Tech. · AFT Microwave · AGC · AINFO · Alter Tech. Tüv Nord · Altum RF · American Standard Circuits · Ampleon · AnaPico · Anhui LuXun Electronic and Tech. • Anritsu · Ansys · AO Tech. · Artech House · ASB · AT Microwave · ATEK MIDAS · AutomatisierungsTechnik Voigt · AXTAL **B** Becker Nachrichtentechnik · Benchmark Elec. · Bird Tech. · bsw TestSystems & Consulting **C** Cadence Design Systems · CADFEM · Ceyear Tech. · Chengdu Eastlead Elec. Tech. · Chengdu EastMicro Tech. · Chengdu Hanxin Guoke Integration Tech. · Chengdu Hardware Tuohai Comm. Tech. · Chengdu Hualuo Tech. · Chengdu Huaming Tech. · Chengdu Huaxing Dadi Technology · Chengdu Intelligent Microsystem Tech. · ChengDu JIACI TECH. · Chengdu Jingxin Tech. · Chengdu Lingvi Comm. Tech. · Chengdu Microem Tech. · Chengdu Precision Rong Creation Tech. · Chengdu Qihang Sys. Integration · Chengdu Sampling Master Elec. Tech. · Chengdu Seekon Microwave Comm. • Chengdu Sinoscite Tech. • Chengdu SIWI High-Tech Ind. · Chengdu Skylink Intellitech · Chengdu Sufastech Tech. · Chengdu Wattsine Elec. Tech. · Chengdu Weixing Tech. · Chengdu Yatop · Chengdu Yuexiang Tech. · Chengdu Zysen Tech. Chip Integration Tech. Center · ChongQing Ceratronics Tech. · CML Microcircuits · Coilcraft · Com.Int.El. · Comm. & Power Ind. · Compound Semicon. (Xiamen) Tech. · Copper Mountain D Dalian Dalicap Tech. · Danyang Teruilai Elec. · Dassault Systèmes · dataTec · DB Design Comm. Tech. · DICONEX DELTA OHM · DiTom Microw. · dSPACE EISO · Electro Technik Ind. · EM Invent · EMCO ·

EPX Microw. · ERZIA · ESA-VSC Lab. · ETL Systems · ETS-Lindgren · Euler Microwave Dev. · EuMA · EuMW 2024 · ESA · eV-Tech. · Everbeing · Exens Solutions **F** Faraday Defense · Farran · Filtronetics · Filtronic · Flann Microwave · Focus Microw. Gr. · FormFactor · Fraunhofer FHR · Fraunhofer IAF · Frontlynk Tech. · Fujian Micable Elec. Tech. Group **G** Gallium Semicon. · Gapwaves · GEL-PAK · Golden Devices · Greenray Ind. • GS Elec. Η Hangzhou Freqcontrol Elec. Tech. · He Fei HTMICROWAVE Tech. · HENSOLDT · HI MICROWAVE · HJ Tech. · Huber+Suhner · Hytem I iCana · IEEE MTT-S/IMS2024 · Igor Abramzon · IHP ims Int. Manufact. Services · IMST · InfiRay Microsystem Tech. · Ingun Prüfmittelbau INNO CIRCUITS · iNOVEOS · Insulated Wire · Integra Tech. · Intelliconnect · Isola · ITEQ · ITF 👖 JQL Tech. · JunCoax RF Tech. · Junkosha 🔣 Keysight · Knowles Precision Devices · KOSTECSYS · Kuhne Elec. · Kunshan Dloorplf Elec. Tech. · KVG Quartz Crystal Tech. · KYOCERA AVX · KYOCERA Europe Kunshan KunDer Technology L LadyBug Tech. · Leanfa · LINTEK · Low Noise Factory · LPKF M MACOM · Marki Microwave · Maury Microw. & AMCAD Eng. · Megaphase · Meixin (WUXI) Comm. Tech. · Melatronik · Mesuro · METDA · MEV Elektronik Serv. · MI-WAVE · Mician · Micro Systems Tech. · Microsanj · Microw. Factory · Microwavefilters & TVC · Microw. Journal · Microw. Vision Gr. · Milexia · MPG-Microwave Prod. Gr. · MP · MTR · Municom · Murata Elec. N NA-WAVE · Nanjing Anertai Telecom · Nanjing Arance Elec. \cdot Nano Dimension \cdot NI \cdot Nova Microw. · NSI-MI Tech. O OKTAL Synthetic Environment · OPHIR RF · Optiprint · Optomec P Pasquali Microw. Sys. • Pendulum

Instr. · Pickering Interfaces · Pico Tech. · PIDSO-Propagation Ideas & Solutions · Plexsa Manufact. · Precision RF Elec. · Presidio Comp. · Pro Nova · Prâna R&D 💽 O-TECH · Qotana Tech. · Qualwave · Quantic Elec. · Quantum Microw. **R** Radiall · Reactel · Res-net Microw. · RF Lambda · RF ONE Elec. · RFMW · RFTR Elec. · Richardson RFPD · Rogers · Rohde & Schwarz · Rosenberger · RUPPtronik **S** Saab · Samtec · Schott · Sensorview · Shenzhen Megmeet Elec. · Shenzhen Superlink Tech. · Shenzhen Yulongtong Elec. · SIAE MICROELETTRONICA · Sichuan Bopu Microw. Tech. · Siglent Tech. · Signal Integrity Journal · Signal Solutions Nordic · Silicon Radar · SIMUSERV · Smiths Interconnect (HYPERTAC) · Sonnet Software · Southwest Microw. · SpaceForest · Spectrum Control · SPHEREA · SPINNER · Statek · StratEdge · Sumitomo Elec. · Sunfire Tech. · SuperApex · Swissto12 · Synopsis · Syntony · Syscom Advanced Mat. T Tabor Elec. • TACTRON • Talent Microw. · TECH-INTER · TECHNIA · Technische Universität Kaiserslautern · Techniwave · Teledvne · Telemeter Elec. · TELTEC Semicon. Technic · MathWorks · TICRA · Tiger Microw. Tech. · TMYTEK · TNO · Transcom · Trilight Microw. U UIY · UMS · University of Duisburg-Essen V Val Space Cons. · Varioprint · Ventec Int. Gr. · VIA elec. · Viper RF · Virginia Diodes · Vishay Elec. W WAVEPIA · WavePro · Wavetrack · Wellson Hi-Tech · Werlatone · WESTMAG TECH. · WIN Semicon. · Withwave Wolfspeed · Würth 🗙 X-Fab · Xiʻan HengDa Microw. Tech. Dev. • Xtaltq Tech. Y Y-TECH • Yun Micro Elec. Z Zhejiang Jiakang Elec. Zhongjiang LIJIANG Elec.

